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1« INTRODUCTION

1.1 Broiegt Purpose

Pressuremeter tests offer an array of advantages over
present day methods employed in the design of laterally
loaded piles, The pressuremeter method allows for the
design of piles btased on a3 series of P-y curves developed
from point-by=-point irn=-situ measurements, rather than curves
derived from cne or two measured parameters, The pressure-
meter 13 a versatile instrument and can be employed in
virtually any soil type including those for which there are
no existing recommendations for the derivation of P-y
curves, The pressuremeter allows for direct modeling of the
pile installation method: pre-bored pressuremeter tests for
drilled shafts and driven pressuremeter tests for driven
piles. The pressuremeter is also capable of simulating the
expected pile loading conditions: sustained pressure incre-
ment tests, unload-reload cyclic tests, and rapid inflation
tests yleld siteespecific s0il responses to creep loading,
cyclic loading, and dynamic loading respectively.

These advantages over existing methods prompted this
project. The chief objective was to incorporate cyclic
loading effects into the derivation of P-y curves obtained
from pressuremeter tests in order to predict the response of

Piles in sand subjected to eyelic lateral loading.




1.2 Proiect ADpreach

The approach employed toward this end included three
Separate phases, Existing data on cyclic laterally loaded
pile tests ipn sands were analyzed in the first phase. In
the second phase, predictions were made of the cyclic res-
ponse of the 10.75 inch pipe pile load tested by Morrison
and Reese (1986) at the University of Houston Foundatiorn
Test Facility sand site. These predictions were prepared
using previously performed pressuremeter test results
together with a degradation model selected in phase one.
The predictions were then compared to the results measured
during the full-scale cyclic lateral load tests performed by
Morrison and Reese (1986). The third phase of the project
consisted of a series of model pile cyclic load tests ccon-
ducted in the Texas A&M University laboratories and of a
similar series of cone pressuremeter tests. The degradation
model was again employed to predict the cycl;e responses of
the model piles; the results were compared to the measured

responses.




2. ANALYSIS OF EXISTING DATA

2.1 Data Base for Cyelic Laterally Loaded Blles ip Sand

By surveying the available literature, 16 pile load
tests where piles had been Subjected to cyclic horizontal
loads were found. These 16 tests were performed in 5 dif=-
ferent studies: 2 in dense sand, 2 1in dense sand and gravel,
and 1 in sandy clay loam. The list of load tests is pre-
sented in Table 1. The essential data from each load test
may be found in Appendix A. The data base included sands
with SPT blowcounts ranging from 10 to 40. The test piles
varied from 1 to 4 feet in diameter with lengths varying
from 16.5 to 73 feet, The number of cycles performed at any
given load level ranged from 25 to 100. The data btase
included both onee-way and two-way cyelice tests.
2.2 Degradation Mgdel

Using the horizontal load versus horizontal displace-~
ment curves at the top of the Piles, a secant stiffness,
Ks(N), was defined for the Nth cycle at each cyeclic level
(Flgure 1). This secant stiffness is a function of the
cycle number. The following model was used to fit the
evolution of the secant stiffness with increasing number of

eycles:

M = N—% (1)

Ks( 1)
This model is credited to Idriss, et al, (1978) and has been

used with success by several authors including Riggins
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b

1 10 100 1000
Cycle Number, N

1
—

Figure 1. Cyclic Parameters Definitiom (After Makarim and Briaud,
1986).




(1981) for cyclic simple shear tests, Briaud and Felio
(1985) for cyclic verti:zal loads on piles, and Makarim and
Briaud (1986) for cyclic lateral loads on piles in clay.
The exponent z is an indiéation of how rapidly the stiffness
of the pile-so£l assembly qecreaaes under c¢yclic loading and
i3 called the cyclic degradation parameter. An increase in
the magnitude of 3 means an incerease in the rate at which
the secant stiffness Ks(N) decreases with increasing numbers
of cyecles. The values of a in equation (1) were back-
calculated for each locad level of each lateral load test in
the pile dat# base.
2.% Besults of Data Analvais

The cyclic degradation parameters from the data base
are plotted in Figure 2 against the relative displacement cf
the pile head corresponding to the peak pressure of each
cyclié series, From the cocllected data, it c¢an e observed
that for sand:

(1) The degradation parameters varied from O0.01 to
0.27, had an average of (.072 and a standard devia=-
tion of 0.056,

(2) The trend indicates less degradation at higher
load levels within a given load test (a de=-
creases with incereasing y/R values).

(3) Degradation appears to be greater for pili:s su.-
jJected to cone-way cyclic loading than for piles

subjected to two=way cyeclic loading.
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The last observation i3 different from findings in a
similar data base analysis performed for piles subjected to
eyelic lateral loads in clays (Makarim and Briaud, 1986)
where very little difference existed between one-way and
two-way cycllie loading.

A possible explanation for this difference is as fol-
lows: In the case of two~way c¢yclic horizontal lcad tests
in sand, a gap forms behind the pile upon reversal of the
load. Because the sand has little cohesicen, the s3and falls
into the gap. When the pile is loaded back in the first
direction the deflection is decreased compared to the case
where the gap would not have been filled. In the one-way
horizontal load tests in sand, the gap does not open and
therefore larger deflections upon reloading can be expected.
This explains why the two-way horizontal cyeling of piles in
sand leads to little degradation while one-way cycling of
piles in sand leads to significant degradation. In c¢clays,
for two=-way cyclice horizontal loading, the gap doces rnot
collapse and therefore the two-way cycling is equivalent to
w0 one=way cyclic tests, one on each 3ide, This explains
why there is very little difference between one-way and two=-

way c¢yclic horizontal loading of piles in clay.
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Figure 6. Test Site Stratigraphy (from Ochoa and C'Neill,
1986).
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and cone penetration tests were performed at the site, The
locations of these tests are shown in Figure 7. The SPT
blowcounts with respect to depth in Figure 8 and the CPT
results in Figure 9 are from the test locations farthest
from the piles.-These Wwere presumed to be the closest to the
conditions prior to the load tests.

3.3 Iwe-way Displacemept-control Tests on the Single Pile

The 10.75 inch singlekpipe plle was tested uander
lateral cyeclic loading in the fall of 1984, A 4000 1lb. load
was ipitially applied to the pile, forcing it to deflect
away from the reaction pile. This was the first direction
of loading. The deflection was then noted and a reverse
load applied to the pile of sufficient magnitude to deflect
the pile toward the reaction pile a distance equal to the
deflection noted in the first direction of loading. Subse-
quent cycling was performed between these two deflections.
A 15-3econd pericd was used for the cycles, After the
desired number of cycles were completed, the pile was locaded
in the firast direction of loading up to the next desired
lcad level for displacemente-control cycling.

The resulting horizontal lateral lo¢ad versus horizontal
deflection curve is presented in Figure 10, The lcad=deflec~
tion history of the pile head is depicted in Figures 171 and
12. Instrumentaticn along the outside face of the pile
allowed for the measuring of the bending moment in the pile

with depth, exemplified in Figure 13. From this data, the
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30il resistance was generated through double integration of
a polynomial funmction fitted to the measured bending moments
using the least squares method (Morrison and Reese, 1986).
The results are presented as P-y curves in Figures 14, 15,
and 16.

Significant local densification of the sand surrcunding
the pile was evidenced by the formation of a funnel~-shaped
depression around the pile during “he cyclilc testing. At
the conclusion of the 20 kip cyeling series, the depression
measured 9 inches in depth and had a radius of approximately
30 inches (Morrison and Reese, 1986).

3.4 Degradation Model Resulta

The resulting a versus y/R (%) values for the 10.75
inch single pile tests are plotted in Figure 17, The
results agree with the cobservation made during the data base
analysis that degradation in two-way cyelle tests in sand
may be negligible., The average 3 in these two=-way tests was
0.02. During some cycles the soil-pile response actually
showed an increazse 1in resistance to displacement with
increased cycling (negative 3).

The load tests did not display a marked decrease in the
degradation parameter with increasing y/R (%). The degra-
dation remained fairly comstant with variations in the dis-
placement ievel and with increasing cycles after the initial

few cycecles,
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4, MODEL PILE LOAD TESTS AT THE

TEXAS A4M UNIVERSITY LABCERATORIES

4.1 Model Pile Load Test Apparatus

All of the model pile cyclic lateral load tests conduc-
ted at the Texas A&M University Laboratories used the same
model pile and test drum. The model pile was a solid steel
rod 1.361 inches in diameter. The test drum had an inside
diameter of 22.38 inches (16.44 model pile diameters). 1In
the drum, the soil depth was approximately 33 inches (Figure
18).

The equipment for conducting the model pile load tests
was initially coanstructed to perform only one-way load-
control tests (Figures 19 and 20). This setup allowed for
lateral step loading of the model pile by placing dead loads
on a hanger attached to the pile by a cable-pulley systen.
Horizontal displacements were measured with a dial gage
aligned parallel with the axis of lcading and affixed on the
side of the drum opposite to the cable~pulley system. A
floor jack elevated the dead locad weights during unload por-
tions of the c¢yelic loading, rellieving the cable tension and
removing the lateral load on the model pile (Figure 21),

The apparatus was later modified to allow the model
pile to be tested under one-way displacement-control, two-
way load=control, and two-way displacement-control tests

(Figure 22). The ipatalled pilile was attached through a
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Figure 19, Schematic of Model Pile LLoad Teat Apparatus for
One-way, Load-control, Cycelic Tests: 1. Test
Prum, 2. Displacement Dial Gauge, 3. Model
Pile, 4, Bearing Plate for Displacement Dial
Gauge, 5. Loading Cable, 6. Pulley, T. Dead
Locad Hanger, 8. Dead Load Weight, 9. Floor Jack.
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Figure 20. Mocdel Pile Load Test Apparatus for
One-way, Load=control, Cyclic Testa.

Figure 21, Unloading the Model Pile in a Cne~way,
Lead=control, Cyeclic Test Series,




i

Figure 22. Schematic of Model Pile Load Test Apparatus for

One-way, Displacement-control and Twoeway Cyeclic
Tests: 1, Test Drum, 2. Lubricated Screw=-3Shaf:
Bearing, 3. Screw Shaft, 4, Proving Ring Car-
riage, 5. Proving Ring, 6. Model Pile, 7.
Proving Ring-to-Pile Connector, 8. Bearing Plate
for Displacement Dial Gauge, 9. Displacement
Dial Gauge, 10. Screw=Shaft Wheel for Carriage
Travel.
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proving ring to a carriage riding on a screw shaft. The
pile-proving ring connectlion was designed such that the
moment in the plane of lateral loading would be negligible
at small displacements (FPigures 23 and 24). Loads were
measured with the proving ring, which had been calibrated
for botk tenaion and compression to allow for two=way
loading. Displacements were measured with a dial gage con-
nected to the drum and aligned with the axis of loading.
Loads were applied during the load=-control tests by turning
the screw sharft untii the proving ripg reading corresponded
with the chosen load. Displacements were similarly applied
during displacement-control tests by turning the serew shaft
until the reading on the dial gage indicated the desired
horizontal displacement, The screw shaft and bazse along
which the carriage traveled were lubricated before each test
to minimize friection, rendering any induced tranaverse loads
negligible when compared to the horizontal load along the
longitudinal axis of lcading. |
4.2 Soil Copdikiops apnd Pile Placement Procedures

To investiga?e variations in pile response due Lo
installation method and scll conditions, three separate
model pile placement procedures were tasted:

(1) the post-compacted, single lift procedure,

(2) the pre-compacted, single lift procedure, and

(3) the post-compacted, multiple lift procedure.

The first procedure was chosen as a model of a bored pile
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Figure 23. Model FPile Locad Test Apparatus for COne-way,
Displacement-control and Two-way Cyclic Tests,

Figure 24, Pile-to-proving ring Coonection and Dilal
Gages on Two=way Cycliec Test Apparatus.
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with little soil disturbance. The drum was filled with
loose sand apd the pile pusbhed to the desired depth., The
2and was then compacted in a single 1ift around the pile
with a concrete vibrator, repeating the pattern in Figure
25a twice, peneﬁrating fully, and the pattern in Figure 25h
once, penetrating te¢ half of the socil depth. The second
procedure modeled the conditions of a driven pile. After
completing a pile test from the first procedure, the pile
was removed and the sand reccocmpacted using the pattern in
Figure 25b penetrating fully into the drum (Figure 26)., The
model pile was then driven into the sand with a rawhide
mallet until the desired depth was achieved (Figure 27).
The third procedure simulated the installation conditions of
the 10.75 inch pile tested by Morrison and Reese (1986) at
the University of Houston sand site. The model pile was
first placed in the empty drum and sand was added in six
lifts, each compacted around the pile indeperiently, and
each approximately six inches thick. Compaction was
achieved by repetitively plunging the concrete vibrator into
the 1ift beginning near the model pile and.spiralling out=-
ward toward the drum perimeter (Figures 25¢ and 28).

The weight and the volume of the sand in the drum were
measured for each type of pile placement procedure. The
resulting unit weights, presented in Table 2, indicated a
slight increaﬁe in the average density of the sand for the

post=-compaction, multiple lift procedure cover the post-
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Figure 25, Compaction Patterns for Model Pile Load Test Sand.
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Figure 26. Pre-compacting the Sand with the Vibrating Rod.

Figure 27. Driving the Model Pile to Test Depth.




Figure 28. P?xst-compacting Sand in Multiple Lifts.
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Figure 29. Cone of Depression Around Driven Model
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Soil Conditions Average Unit Weight
and Placement
Procedure (lbs/ft3)

st e }

Post-compacted 111.2

Single Lift

Pre-compacted

Single Lift 114.4

Driven Pile

Post=-compacted 111.7
Multiple Lifts

Table 2. Unit Weights of the Various Soil Preparations at
the Texas A&M University Laboratories.
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compaction, single 1ift procedure. With the driven pile,
significant compaction occurred in the immediate vicinity of
the pile during pile driving.' This was evidenced not only
by the higher unit weight, but also by a cone of depression
that appeared around the pile during insertion (Figure 29),
After driving, this depression was generally about eight
inches in diameter and one and one~half inches deep.

The s8c0il for all of the tesats was a poorly graded
medium sand with little or noe fines (Figure 30). The
average nmcisture content for the tests was 0.03% and was
constant with depth. The angle of internal friction of the
sand at a unit weight of 110 pounds per cubic foot was
85,59,

4.3 Qpne-wavy Load-control Taests

One=way locad=ccntrol tests were performed for each
pPlacement procedure with the apparatus pictured in Figure
20, The pile was 1in a free-head condition. Loading incre=-
ments of 4 kg (8.8 lbs.) were applied and pile displacement
readings taken 30 seccnds after each locad application.
Therefore, the period of cycles was one minute. Twenty
cycles were conducted at three different peak locad levels.
The resulting lateral load versus horizontal displacement
curves are presepted in Figures 31, 32, and 33.

4.4 Qpne-way Displacement-control JIests
The new apparatus employed in the one«way displacement-

control tests and the two=-way tests allowed for a quicker
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TEXAS A&M UNIVERSITY LABORATORIES
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TEXAS A&M UNIVERSITY LABORATCRIES
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Figure 32, Lateral Load versus Horizontal Di:placemen't of
Pile Head for One-way, Load-control Test: Pre-
compacted, Single Lift, Pile Placement Procedure.
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Figure 33. Lateral Load versus Horizontal Displacement ofk
Pile Head for One-way,lLoad-control Test: Post=-
compacted, Multiple Lift, Pile Placement Frocedure.
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application of specified displacements or loads., The period
of cycles was 40 seconds. Load readings were taken every 20
seconds following the forced displacements, which were
applied in 0.005 inch inerements. The pile was in a free=
head condition. Twenty c¢ycles were conducted at each of
three displacements levels: 0.040 inches, 0,080 inches, and
0.125 4inches, which corresponded to relative displacements
(y/R) of 5.9%, 11.8%, and 18.4%. The bottom of each cycle
corresponded to that diaplacement where the lateral load
returned to zero (Figure 34). The lateral load versus
horizontal displacement curves are presented in Figures 35,
36, and 37.
4.5 Iwo-way Load-coptrol Tests

The two-way locadecontrol tests were conducted by
applying loads in 5 1b. increments every 20 seconds in one
direction until the desired lcad level for cycling was
reached. The same load was then applied in thes opposits
direction and a reading of the corresponding displacement
was made. The lcad was then applied in the original direc-
tion, completing the cycle. The pericd of cycles was 40
seconds and the pile was in a free-head coadition. The
resulting lateral load versus horizontal displacement curves
are presented in Figures 38, 39, and 40.
4.6 Ino-way Displacemept-coptrol Tests

The two=way displacement-control tests were conducted

by forcing incremental displacements of 0.005 inchea every
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Figure 35. Lateral Load versus Borizootal Displacement of
Pile Head for One-way, Displacement=-control Test:
Post-compacted, Single Lift, Pile Placement

Procedure,
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Figure 36. Lateral Load versus Horizontal Displacement of
Pile Head for QOne-way, Displacepment=-control Test:
Pre~compacted, Single Lift, Pile Placement
Procedure,
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Figure 37. Lateral Load versus Borizontal Displacement of
Pile Head for One-way, Displacement-control Test:
Post~compacted, Multiple Lift, Pile Placement
Procedure.
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Figure 38, Lateral Load versus Horizontal Displacement of
Pile Head for Two=way, Load=-control Test: Post-
compacted, Single Lift, Pile Placement Procedure.
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Figure 39, Lateral Load versus Horizontal Displacement of
Pile Head for Twoe=way, Load=control Test: Pre-
compacted, Single Lift, Pile Flacement Procedure,
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Figure 40, Lateral Load versus Horizontal Displacement of
Pile Head for Twoe~way, Load-control Test: Post=
compacted, Multiple Lift, Pile Placemen-tProcedure,
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20 seconds in one direction until the desired displacement
level for cycling was achieved. Apn increasing load was then
applied in the opposite direction until the same magnitude
of displacement was reached i{n the opposite direction of
travel, Readings of load and negative deflection were
recorded after the 20-second interval, and an increasing
lcad was then reapplied to the pile in the original direc-
tion until the displacement recorded during the first
loading was matched, completing the first cycle. The period
of cycles was 40 seconds and the pile was in a free-head
condition. The lateral load versus horizontal displacement
curves resulting from this test series are shown in Figures
41, 42, and 43,
4.7 Model Pile Mongtonic Response Envelopes

A compariscnon of the monotonic response envelopes of the
one=way mocdel pile load tests reveals a softer response for
the model piles subjected to displacement-contrel loading
than for the model piles subjected to load-control loading
(Figure 44), This variation is primarily a reflection of
the difference in the elevations at which the loads were
applied. The apparatus for the one~way load=-control model
pile test (Figure 19) applied the lateral loads at approxi-
mately 5 icches above the sand surface. The apparatus for
the one=way displécenent-control model pile test (Figure 22)
applied the lateral loads at anm elevation of approximately

190 inches, The elevation at which the deflections were
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Figure 41, Lateral Load versus Horizontal Displacement of
Pile Head for Two-way, Displacement-control Test:
Post=-compacted, Single Lift, Pile Placement

Frocedure,
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measured was approximately 5 inches for both series of
testas,

Both two=-way cyclic test series were conducted using
the second apparatus (Figure 22)., As a result, the loads
were applied at essentially the same elevation for both of
the two=way cycelice lcocading series, The range of nmonotonic
response envelopes of the load=control and the displacement-
control two-way cyclic tests generally coincide (Figure 45).

Within each test series the model pile driven into pre-
coppacted sand genefally had the softest monctonic response
at low load levels and the stiffest response at high load
levels (Pigures 44 and 45), This suggests that driving the
model pile densified the sand in the test drum, resulting in
a bigher ultimate aoll/pile stiffness; however, the driving
of the plle was not completely straight causing an ipitially
weaker response, Al 3o within eacﬁ series, the post-com-
pacted multiple-l1lift insertion method resulted in a stiffer
response than the post-compacted single-lift insertion
method (Figures 44 and 45). This may be attributed to the
higher density reached when compacting the sand in multiple
l1ifts (Table 2).

4.8 Degradation Model Results and Discussion

The percent loss of pile-scil stiffnpess with increasing
nunbers of load cycles is calculated from the cyclic pile
response envelopes as depicted in Figure 46. The percent

losses measured at deflections of 0.023 inches and 0.10




58

TEXAS A&M UNIVERSITY LABORATORIES

a 1 T v rrryrrrrrrrr r 4
| MODEL PILE MONOTONIC RESPONSES 44 :
[ TWO-WAY CYCLIC LOAD TESTS 10 J
< r -
4 -
159 ~ -
4 L
3 L
: e
108 ~ -
b -
3 %8 - -
= i ]
i | ]
§ 8
= f ]
3 , )
-“ — L
L -
L o
£ L
-199 -
b 10 -
d -
i )
4 L
b 1 ® load-control load tests p
3 x displacement=control load testsg -
-a 1 e 2 2 'y l . g a2 I 8 ' 2 . [ & o & 2 L 1 g2 2 2 ]
.02 -ct ' ll .2 o3
HORIZONTAL DISPLACEMENT (im)
Figure 45. Range of Monotonic Responses in the Model Pile

Two-way Cyclic Load Tests at the Texas A&M
Univerasity Laboratories.




TOP LATERAL LOAD (lbe)

59

1 N
CYCLE CYCLES

. .
Hp-----—----- -
i B Percent Loss= |

E%FN x100 % ]
[ T T

y
TOP MORIZONTAL DISPLACEMENT (irm

Figure 46, Determination of Percent Loss of Soil-pile
Response with Increasing Cycle Number.
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inches (approximately 2% and 8% of the model pile diameter)
after 20 load cycles are presented in Table 3, Also, the
back-calculated 3 values from the model pile tests are
plotted in Figure 47.

The results agree with the observation made during the
pile data base ahalysi: that, in sand, one-way cycling
results in greater degradation than two-way cyeling., Degra-
dation was minor and in some cases negative (strengthening
of the soil) for the two-way c¢yelic tests (Table 3 and
Figure 47). The average percent loss after 20 cycles in the
first-lcad direction of the two=way cyclic tests was =11%
(Table 3). For the one-way cyclic tests, on the other hand,
significant degradation developed (Figure 47), and the
average percent loss after 20 cycles was 17% (Table 3.

As with the single pile at the University of Houston
sand site, after the initial few cycles, the degradation
parameter 3 remained fairly constant with increasing cycle
numbers, Also, the rate of degradation of the model pile-
soil stiffness response (a) tended to increase slightly with
increasing displacement levels (y/R (%) in Figure 47).

The results also indicate that the stiffness degrada-
tion of piles subjected to one-way displacement=-control
cyeling is generally greater than the stiffness degradation
of piles subjected to one~way load-control loading (Table
3). The average percent loss was 19% after 20 one-way

displacement-control cycles, but was only 16% after 20 one
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way load-control cycles (Table 3). This variation may be
partially attributed to the difference in the extent of the
zone of s0il 4influenced during these two different pile'
loading methodas, In displacement=-control eyelic tests, the
Zzone of influence remains essentially limited after the
initial few cycles since the maximum pile travel 1s held
constant., Continued cyecling, therefore, continues to weaken
the.same soll zone., Load~control cyelic tests, on the other
hand, do mot limit the pile travel. .As the initially
affected s0il zone weakens, the pile deflects further on
Successive cycles, enlarging the zone of so0il influenced.
New soil, as yet unaffected by previous cycles (and, there-
fore, not yet weakened) is thus continually encountered.
This variation in the zones of influence may also help
to explain why the two-way displacement-control eyelic load
testa Eesulted in greater soil strengthening than the two-
way load-control cyelic load tests. The two-way displace-
mente-control tests averaged a percent gain in pile=scil
stiffness of 19% (a negative percent loss in Table 3). The
two-way load-control tests gained an average of 0%, Con-
tinued cyecling during a displacement-control test may
increasingly densify the same soil zone; whereas, during a
load=control test, some of the energy from each cycle is
expended to enlarge the zone of influence. AsS a result, ;he
zone influenced during the displacement-control tests

develops a higher degree of densification than the larger
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zone irfluenced during the load=-control testa.

The model pile tests were conducted in dry sand and the
influence of the degree of saturation was not directly
investigated. The dry sand model pile tests under two-way
cyelic loading definitely showed a tendency for stiffer
response with increasing cycles at low displacement levels,
This phenomenon was not observed in the fullescale pile lead
test at the University of Houston Foundation Test Facility,
where the sand was fully saturated. The cyclice degradation
parameter back-calculated from the 10.75 inch pile generally
remained above zero. The effect of sand saturation on
eyclic lateral loading of piles needs to be more fully

explored.
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5. PRESSUREMETER EQUIPMENT AND TEST PROCEDURES

5.1 The TEXAM Pressuremeter Equipment

The TEXAM pressuremeter test equipment was developed at
Texas A&M University between 1980 and 1983 and is now sold
commercially by ROCTEST. It 1s composed of a portable
control unit and a probe with a single inflatable cell
(Figure 48). The control unit houses a fluid storage zank
connected to the probe by very high strength tubing. The
tubing has an 8 mm outside diameter and experiences negli-
gible volume expansion under pressure (0.02 cm3/k3/cm2 per
linear meter of tubing).

Pressure is developed in the system through the use of
a pistop=cylinder assembly within the control unit. A screw
Jack i3 employed to advance the piston, forcing fluid from
the storage tank, through the tubing, and intoc the probe's
inflatable cell. Any of thrge pressure gages mounted on the
control unit may be used to monitor the system pressure,
depending on the range of pressures encountered during the
test. A dial gage tracks the piston travel. Since piston
displacements are directly related to the volume of water
injected into the tubing and probe, readings from the piston
displacement dial gage will be referred to as injected
volume readings in this report.

The pree~bored pressuremeter probe employed in this

study is made of a single inflatable cell 40 cm in length
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Figure 43, Schematic of Pre-boring Pressuremeter Model
TEXAM. 1. Probe, 2. Pressure Gauges, 3. Volume/
Displacement Indicator, 4. Manual Actuator, 5.
Tubing, 6. Calibration Tube, 7. Connmection for
Probe, 8. Connection toc the Water Reservolir
(After Makarim and Briaud, 1986).
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and with a deflated diameter of 5.8 ¢cm. The cell membrane
is a rubber cylinder protected against puncture by a series
of overlapping steel strips rubber-glued to the membrane.
The probe itself is hollow to allow drilling fluid and
subsurface water to pass freely through the probe during
insertioca.

5.2 Ihe Cope Pressuremeter Equipment

The cone pressuremeter test equipment i1s also composed
¢f a portabdble c¢ontrol unit and a probe with a single
inflatable cell (Figure 49), It i3 sold commercially by
ROCTEST under the name of PENCEL. The control unit and
probe, however, are more compact than those of the TEXAM.

Pressure is similarly developed in the system through
the use of a piston~cylinder arrangement; however, rather
than reading the piston displacement with a dial gage, a
counter connected to the screw jack which advances the
Piston indicates the volume of fluid displaced in cubdic
centimeters, A single pressure gage indicates fluid pres=-
sure within the systen.

The inflatable cell in the probe has a length of 23 cm
and a deflated diameter of 3.2 cm and is made up of a rubber
membrane protected against pﬁncture by a series of coverlap-
Ping steel strips rubber-glued to the membrane., A dunmy
eccone penetrometer point was mounted on the bottom of the
probe duripng these tests. The probe concects with standard

cone rods and may be advanced into the soil either by
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Figure 49. Schematic of Cone Pressuremeter Model PENCEL.
1. Probe, 2. Pressure Gauge, 3. Volume/
Displacement Indicator, 4. Manual Actuator, 5.
Tubing, 6. Calibration Tube, 7. Connaction to the
Water Reservoir (After Makarim and Briaud, 1986).
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pushing, as with the cone penetrometer, or by driving, to
simulate the insertion of a dr;ven pile.
5.3 IEXAM Rreasyregeter Teat Procedure

Before beginning a series of pressuremeter tests, the
control unit stdrage tank was filled with water. The probe
was then connected to the wunit through the flexible tubing
and the entire system checked for saturation and leaks.
5«3.1 Necessarv Monotonic Calibrations

Once in the field, two calibrations were performed: a
velume calibration and a membrane resistance calibration.
Before calibration, the probe was inflated in the air a few
times to exercise the system components. Then the inflat-
able porticn of the probe was inserted into a tight=-fitting
Steel calibration tube (74.5 mm inside diameter) and
inflated to a pressure equivalent to the anticipated limit
pressure of the soil to be tested. At this time the systen
was again checked for leakage. The pressure was themn drop-
Ped until the probe could first be pulled from the steel
tube, at which point the "zero®™ volume of the probe was
considered to have been reached. The control unit tank was
then ejither bled or filled to read zero injected volume with
the probe still sheathed in the steel tube. The calibration
procedure could then begin,

Since the control unit-tubing=-probe system is not
entirely incozpressible, a volume calibration was necessary

to determine the Mapparent?® volumetric increase in the
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system asscciated with an increase in the internal s3ysten
pressure. This apparent volumetric increase ineludes expan-
sion of the tubing and compression of the inflatable cell
and system fluid, and does unot include inflation of the
probe {Section 6.%). With the probe tightly fitting inside
the steel tube, the system pressure was increased in twenty
15-3econd pressure increments equal to 1/20th of the anti=-
cipated maximum soil limit pressure. The injected volume
and system pressure were recorded at the end of each 15-
second interval (Figure 50).

The membrane resistance calibration was necessary to
determine the pressure required to inflate the probe in the
air to any given injected volume. This membrane pressure
must be subtracted from the pressure recorded during a test
aince this membrane pressure is not applled to the borehole
wall.(Section 6.3). With the probe removed from the steel
volume calibration tube and simply supported to allow for
free cell expansion, the probe was inflated in forty 15=
second volume increments equivalent to approximately 1/40th
of the fully inflated probe volume. At the end of each
increment, the pressure and injected volume were recorded
(Figure 50).

5.3.2 Cyclic Degradatiopn Calibrations

For cyclic testing it was also necessary to determine

cyclic degradation parameters for the volume and membrane

resistance calibrations.
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To determine the cyeclic degradation parameters for the
volume calibration, the probe was inserted into the steel
calibration tube and the pressure increased in a series of
steps as in the case of the standard volume calibration
procedure, When the pressure was approximately equal toc the
pressure level at which cyelic testing in the soil was
performed, the pressure was then decreased to approeximately
half of its peak value. This pressure was maintained until
the end of the 15-second interval, the pressure and the
injected volume values were recorded, and then the probe was
reinflated until the initial pressure was reached again,
completing one cycle. As many as three sats of 100 cycles
each were performed on the TEIAM pressuremeter system with
ﬁegligible degradation (Figure 50). As a result, additional
volume losses associated with cyclic degradation were disre-
garded in the reduction of raw pressuremeter data.

The cyelic degradation parameter fo: the membrane
resistance was similarly determined by cyeling duricg a
standard membrane resistance calibrationm at injected volumes
equivalent to those anticipated during the actual aoil
testing (Figure 50). The differesnce between the cyclic
membrane resistance and the monotoaice membrane resistance
was of sufficient magnitude to warrant the use of the cyclic
membrane resistance i% the reduction of the cyclic test

data.
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5.3.3 20dl Testing Procedures

| After the calibrations were completed, the probe was
ready for the actual soil testing. The borehole was drilled
apd the pressuremeter probe was inserted down to the test
depth. The probe was then inflated in approximately thirty-
five injected volume increments equivalent to 1/40th of the
total fully inflated capacity of the probe. Readings of
pressure and injected volume were taken at the end of each
iS~-second interval.

- Cycling was performed either between preset values of
injected volume or preset values of pressure. Cycling
between preset injected volume values (volume=control tests)
wWwas chosen when modeling the response of displacement con=-
trolled cyclic pile lcad tests, whereas cycling between
preset pressure values (pressure-control tests) was used to
model load controlled cyclic pile load tests,

Geperally, two or thrée series of 20 to 100 cycles each
were performed in each test at pressure levels between 25%
and 75% of the anticipated soil limit pressure,

During the volume=-control tests, the probe was inflated
in volume increments equal to 1750%8 of the probe’s deflated
volume (VOJ, each lasting 15 seconds. This was done until
the pressure was reached where cycling began. At the end of

that 15-second interval the injected volume, V and the

cp’

system pressure, were recorded (Figure 51). Then the

probe was deflated to a pressure, P equivalent to

!"
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approximately half of the pressure Pc At the end of this

p.

15=3econd interval, the pressure, P and the volume, V

r! r’
were noted (Figure 51), The probe was then reinflated to
ﬁhe volume‘vcp and the new preasure was recorded after 1§
seconds, concluding the first cycle, The probe was then
deflated to a volume of Vr, beginning the next cycle, As
many as 100 cycles were run in this manner between the
volumes ch and VP after which the probe inflation was
continued in the standard manner until the next cyeling
level was achieved (Figure 51), The cycling process was

then repeated between the new values of Vc and Vr (Figure

P
51).

Pressure~control tests began in the same manner, incre-
mentally advancing the injected volume until the desired
pressure for the first cyclic series was achieved, As in
the volume=control tests, tﬁe injected voluze ch and the
system pressure Pcp were recorded and the probe was deflated
to Pr and Vr. At this point, however, the probe was rein-

flated until the pressure Pc was regained and after main-

P
taining the pressure pcp for 15 seconds the new injected
volume reading was recorded, concluding the first cycle
(Figure 52). The probe was then deflated until the pressure
bad conce again dropped to Pr (Figure 52). After tke desired
nunber of cycles had been run, the probe inflation was

coptinued in the standard manner up to the next ¢yeceling

level, The c¢ycling process was then repeated between the new
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values of Pcp and P, (Figure 52).

After completing a test, the probe was removed from the
borehole and cleaned to prevent a buildup of s0il particles
between the protective steel strips., The borekole was then
advanced to the next test depth and the soil testing proce-
dure repeated.

5.3 Cone Pressuremeter Test Procedyre

Before beginning a series of pressuremeter tests, the
control unit storage tank was filled with water. The probe
was then connected to the unit through the flexible tubing
and the entire system checked for saturation and leaks.
5.4.1 Neceasary Mopotonic Calibrations

The calibraticn procedures for the cone pressuremeter
were identical to those for the TEXAM (S.ection 5.3.1). The
steel calibration tube used in the cone pressurempeter cal-
ibration had an inside diameter of 33.4 mm.

5.3.2 Cyelic Degradation Calibrationa

The cyclic degradation parameters for the cone pres-
suremeter volume and membrane resistance calibrations were
found through testing procedures identical to those des=-
cribed for the TEXAM (Section 5.3.2). The ecyclic volume
calibration was negligible and so the monotonic velume cali-
bration curve was used in the reduction of test data. The
difference between the cyclic membrane resistance and the
monotonic membrane resistance was significant, and so the

cyclic membrane resistance was used in the reduction of
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cycelic test data.
5.4.3 S04l Testipg Procedures

The 30il testing techniques for the cone pressuremeter
Wware the same as those emploved in the TEXAM tests except
for the insertion method. In the field tests at the Univer-
sity of Houston Foundation Test Facility, the cone pressure-
meter was either pushed into the s0il at a constant rate of
0.1 ft/sec (Figure 53), or driven with a 28 1b hammer drop-
ping approximately 4 feet, accelerated by hand, and hitting
an anvil clamped to the cone rods (Figure 54), During the
model pile tests in the drum at Texas A&M University, the
probe was either driven to depth with a rawhide mallet or
positioned at a predetermined depth in the test drum and the
soil backfilled and compacted around the pile. This latter
technique was chosen to simulate the conditions surrounding
the 10.75 inech pile at the University of Houston. More
specific details on this insertion techbnique will be given

ip Section 8,2,
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6., PRESSUREMETER DATA REDUCTION TECHNIQUES

6.1 Initial Pressure Reading

Before each test, a pressure reading, Pi’ is taken with
the probe simply supported im the air at the same elevation
as the pressure gages mounted on the control unit. This
reading may not equal zero due to temperature variations
during the testing pericd, gage error, or excess pressure
necessary to inflate the probe cell to its "zero®" calibra-
tion volume (Sectiocn 5.3.1)., This imitial pressure is not
exerted on the 30il cavity wall and thus must be subtracted
from each raw pressure recorded during the test.
6.2 Hydrostatic Pressure

With the probe poasitioned at the teat depth, a hydro=-
static pressure exists within the inflatable cell, Pue to
this pressure, there 1s a difference between the pressure
reading on the control upnit and the pressure which exists
in the probe. This pressure difference, Ph, is equal to the
upit weight of the system fluid multiplied by the difference
in elevation between the pressure gage and the cell. Since
this pressure is not registered on the pressure gage, it
must be added to each value recorded during the pressureme=
ter test.
6.3 Membrage Resistance

The membrane resistance calibration curve is a measure

of the pressure necessary to inflate the probe in air. The
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raw pressure from PMT test data at any given injected volume
must be corrected by 2ubtracting the membrane resistance

pressure, P corresponding to the same injected volume.

a?
The pressure Pc i3 necessary Jjust to expand the probe and is
noet transfered to the 30il cavity wallas,

For c¢yclic tests, the membrane reslistance degradation
must also be considered (Figure 50), Fellowing the degrada-
tion model presented in Section 2.2 (Idriss, et al., 1678),
the formula for determining Pdn at a given value of injected

volume and cycle number N may be presented as:

Pcn

-a
PN (2)
where

membrane reaistance pressure at N cycles

o
n

e+
n

monotonic membrane resistance pressure

=
1]

number of cycles at which the membrane
resistance pressure is desired

a = membrane resistance degradation parameter.

For the TEIAM pressuremeter the 3 was 0.02, ihile for the cone
pressuremeter the 3 was 0.03.
6.4 Compressibility

The volume calibration curve 1is a measure of the
increase in volume of the upit-tubing-probe system when the
pressyre ls increased but the probe Iis prevented from
expanding by sliding it into a steel casing. Depending on
the fit of the calibration casing, this curve may require

adjustment to account for the probe's seating against the
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casing wall., This is accompliskhed by translating the injec=
ted volume origin to ccincide with the point of intersection
between the jinjected volume axis and a projection from the
calibation curve where contact with the casing wall is
evident (Figure 55)., Raw injected volume data from pres-
Suremeter tests at any given pressure must be corrected by
subtracting the adjusted volume calibration volume, vc,
corresponding to that same pressure. The volume Vc i3 not
assoclated with the cell expansion. The degradation para=-
meter for the volumetric inerease was found to be negligi-
ble; therefore, no additional corrections were needed to
adjJust the raw pressuremeter data for the influence of
cycling on the system compressibility.
6.5 Corrected Presayremeter Curve

The complete correction process encompassing the fac-

tors described above may be mathematically expressed as

follows:
Veorr(® = Vg = Vo : (4
where
Pcorr(N) = the pressure exerted on the socil cavity wall

at Ncycles

Prn athe raw pressure read during the test at N
cycles

the initial pressure reading with probe at

Py
gage bheight

Ph the hydrostatic pressure correction = E x V¥
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B = the difference between the gage elevation
and the elevaticn at the center of the
inflatable cell {(test elevation)

Y = the unit weight of the system fluid
Pcn = membrane resistance calibration pressure at
N cycles (equation 2)
N = number of cycles
a = membrane resistance cyclic degradation
parameter
vcorr(N) = the corrected injected volume at N cycles
vrn = the raw injected volume read during the test
at N cycles
Von = the adjusted volume calibration value

associated with a pressure of P ().

corr

In order to normalize the final corrected pressuremeter
curves, the corrected injected volume values are used to
derive the relative increases in the probe cell radius.

This {3 achieved by assuming that the cell behaves as a

cylinder expanding radially, such that:

-
-

(‘-31) ‘/ET/—%'WE- (s)

Ro
where
AR = the increase in the probe radius
Ro = the deflated probe radius
AV = the corrected injected volume {(increase in probe

volume)
Vo = the deflated probe volume.
Thus in the final form, the corrected pressauremeter curves

are presented as in Figure 56, with the corrected pressure
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against the borehole wall, P, along the vertical axis and
the increase 1in probe radius divided by the derflated probe
radius, AR/R, (%), along the horizontal axis.

PRESRED, a microcomputer program written by L.M. Tucker
(1986) to reduce monotonic pressuremeter test data, was
modified to allow 1t to handle cyclic pressuremeter test
data and used to reduce the pressuremeter da:a collected
during this project, It should be noted that the corrected
curves presented in this report do not incorporate the
initial reading correction (PiJ;however, this cerrection
was performed before prediction procedures were employed.

6.6 Pressurepmeter Parameters

The pressuremeter first lcad modulus, E is calculated

p'
from Baguelin, et. al., (1978):

I AR\ \2 AR\ N2 (p..
e (1 +(R°)2> ’ (1 +(“°)1) tFamfo)

T ey comy

where v = Poisson's ratio of the soil and is usually assumed

to be 0.33. All other parameters are defined on Figure ¢57.
The values of (P1,{AR/Ro)1) and (Pz,(aR/Ro)z) are taken fron
the steepest initial linear portion of the corrected pres-
suremeter curve (Figure 57).

The pressuremeter reload modulus, E is calculated

r'

using the formula:
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Figure 57, Pressuremeter Parameters Derinit_:ion.
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(1+v) 1 + AR 2 & (1 + [AR e (P2p=P1p)
Ro 2p Ro ir
Er = ‘ (7

S AN O

|- -

with (P1r,(Aﬁ/Ro)1r) and (Pzr'(AR/R°)2r) being the two data
peoints on the reload portion of the pressureseter test
(Figure 57).

The horizontal earth pressure at rest, POH' is assumed
to be the pressure coinciding with the point of maximunm
infléction on the corrected pressuremeter curve's initial
portion (Figure 57).

With the pressuremeter modulus and horizontal earth
pressure at rest determined, the initial borehole radius may
be defined as the (AR/ Ro) value coinciding with the inter-
section of the pressure POH value and a projection of the
pressuremeter first load modulus line (Figure 57). The
relative increase in radius necessary for the probe to seat
against the borehole wall is thus denoted by (AR/Ro)i. For
the reload curve, a similar initial reload borehole radius
may be found by projecting the reload modulus to intersect
Pog at a relative displacement of (AR/Ro)ir.

The limit pressure, P, i: defined as the pressure
necessary to expand the volume of the so0il cavity to twice
its orligipal wvalue. This pressure c¢orresponds to an
increase in the probe radius equal to 0.41 + 1.41 (AR/Ro),.

Most ¢often this requires manual extrapolation of the curve
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to that level of expansion (Figure 57). The net limit
pressure, P:, is the difference between the limit pressure
and the at rest horizontal earth pressure:
Pp = Py = Pog (8)

From the solutiocn of the expanslon of ap ipfinitely
long ¢ylinder in an elastic homogenecus full 3space,
Baguelin, et al., (1978) determined that the se:ant shear
modulus, Gs(N) for the Ntb cycle may be calculated as fol=-

lows (Figure 58):

1 4@§m<“’))2 . (1‘+cé£) 2
Ga(N) (f_g_g) E} {%&))2 — +(§_§)’1~§2 (9)
where
Pcp = peak cyclic pressure
Ro = deflated probe radius

(éﬁ) = relative increase in probe radius necessary for
1 seating against the cavity walls (Figure 57)

relative increase in probe radius corresponding
to the peak of the Nth cycle (Figure 58)

————
&
-3
g

e
H

=
]

number of cycles at which the secant shear
modulus i3 desired (note that the number of
eycles is counted as shown on Figure 58).

The degradation model used in this study is (Idriss, et

al., 1978):

Gs(N) = Gs(1) x N=2 (10)
where
Gs(N) = secant shear modulus at the N®B cycle
Gs(1) = secant skear modulus at the first cycle

N sumber of cycles
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a = cyclic degradation parameter for the secant

shear wmodulus.
The degradation parameter g for a particular series of
cycles 13 equal to the negative slope of the best £fit line
from the plot of log (Gs(N)/Gs(1)) versus log N (Figure 59).

h

The cyclic saear modulus, Ge(N), for the yt cycle may

be calculated from pressuremeter tests as follows (Figure

60):
() . (o (agn)):
Ge(N) =G§£)L(‘ ﬁe§;1§l>)2 — +.Q§ZLEL - (1)
Ro ( ( Ro ))
where
Pr = eyclice pressure varlation
Ro = deflated probe radius
Gé%dL!% = relative increase in probe radius corresponding
to the peak of the Nth ecyecle (Figure 60),

GQ% (N) = relative increase in probe radius corresponding
° to the bottom of the Nth cycle (Figure 60).

N nugber of cycles at which the cyclic shear

modulus is desired (note that the number of
eycles is counted as shown on Figure 60).
Using the same degradation model (Idriss, et al., 1978)

as for the secant shear modulus degradation:

Ge(N) = Ge(1) x NP (12)
where
Ge(N) = cyclic shear modulus at the N'B cycle
Ge(1) = eyelic shear modulus at the first cycle
N = nuﬁber of cycles
b = eyclic degradatiocn parameter for the cycllic

shear modulus.
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The degradation parameter L for a particular series of
cycles 13 equal to the negative slope of the best fit line
from the plot of log (Ge(N)/Ge(1)) versus log N (Figure 61).

The daegradation of the cycllic ahear modulus was not
employed 4in th§ prediction methods used in this report.
However, the plots of log (Ge(N)/Ge(1)) versus log N for the
pressuremater tests conducted during this= project are pre=

sented 1o Appendix B.
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T. PRESSUREMETER TESTS AT THE ONIVERSITY

OF HOUSTCN FOUNDATION TEST FACILITY SAND SITE

7.1 Zest Locatiops, Insertion Techpiques, and Pressuremeter
Iypes

In the spring of 1985, eleven pressuremeter tests were
conducted at the University of Houston Foundation Teat
Faclility in the sand depoesit surrounding the single 10.75
inch test pile. The locations, insertion techniques, and
pressuremeter types are detailed in Table 4 and Figure 62.

A variety of pressuremeter insertion methods were used
to study the effect of the insertion technique on the scil
response. The pre=bored insertion technigue was used with
the TEIAM pressuremeter systen. The TEIAM probe had a
diameter of 5.8 cm and an inflatable length of 40 cm. The
boreholes were prepared with a hand auger while pumping
drilling mud veftically through the bit. The pushed pres-
suremeter tests were performed with the c¢one pressuremeter
(CPMT) system, The CPMT probe had a 2{ameter of 3.2 cm ang
an inflatable length of 23 cm. The probe was advanced to
the test depth at a rate of 0.1 feet per second by a drile-
ling rig (Figure &53). The driven inserticn technique also
employed the ¢cone presauremeter, driven to the test depth
using a 28 1b hammer with a fall of apprqfimately 4,0 feet,
accelerated by hand, and striking an anvil elamped to the

cone rods above the probe (Figure 5&).
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Borehole Insertion Pressuremeter Type Date
Number Method

- T3 Pre-bored PBPMT / TEIAM PMT 4 s 85

Ty Pre=bored PBPMT / TEXAM PMT 4/ 85

P2 Pushed=-1in PCPMT / Cone PMT 5 / 85

D1 Driven~in DCPMT / Cone PMT 5/ 85

D3 Driven=-in DCPMT / Cone PMT 5 / 85

Table 4, Pressuremeter Tasts Performaed at the Dniversity of

Houston Foundation Test Facility Sand Site.
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7.2 2ressuremeter Modull and Net Limit Pressyre Profiles

Profiles of the pressuremeter first load modulus,
pressuremeter reload modulus, and the net limit pressure are
presented in Figures 63, 64, and 65. These values are also
tabulated in Table 5. The stiffer response of the driven
pressuremeter as well as its higher net limit pressure may
be indicative of the local densification that occurred
during driving. Visual evidence of the densification was
provided by a cone of depression that formed arcund the cone
rods as driving proceeded (Figure 66).

7.3 Bre-bored IEXAM Pressuyrepmeter (PBPMT) Besulty
7.3.1 Corrected Pressyrepeter Curves

The raw pressuremeter test data was reduced as
described in Section 6. The resulting corrected pressureme-
ter curves, borehole pressure versus relative increase iz
probe radius, are presented in Figures 67 through 70.
Veiume=control c¢cyeling was performed to simulate the dise
placement-control pile load tests. In borehole T4, however,
both volume=contrel and pressure=control c¢ycles were pers-
formed within each cycling series,

Three sets of 100 ¢ycles were performed at depths of
2.0 and 4.5 feet. During the test at T.5 feet an initial
series of 10 cycles was followed by a series of 100 cycles
performed at a pressure level below the maximum pressures
that had already been applied to the soil cavity., Addi=-

tionally, a S0-minute relaxatiocn test was performed at a y/R
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Figure 64, Pressuremeter Relocad Modulus versus lepth.
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Pressuremeter Net Limit Pressure versus Depth.
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Bore- PMT Depth E E, PE
hole Type (feet) (bags) (bars) (bars)
T3 PEBPMT 2.0 k9,1 219.4 2.91
Pre=bored

4.5 T1.5 272.7 7.90

Te5 40.3 205.7 6.8

T4 PBPMT 2.5 66 .1 462 .1 4,91
Pre=bored

p2 PCPMT 2.0 75.6 289.4 5.29
Pushed~in

5.5 99.6 286,.8 T.90

8.5 47.2 170.2 8.31

D1 DCPMT 2.0 84.3 318.7 7.2%
Driven-in

4.5 199.6 543.2 13,70

D3 DCPMT 2.0 87.4 259.3 .91
Driven=4in

4.5 198.3 696.8 16.10

Table 5. Pressuremeter Modulil and Net Limit Pressure with

Depth from Tests at the University of Houston
Foundation Test Facility Sand Sita.
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Figure 46, Cone of [Depression Around Driven

Cone Pressuremeter Test.
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1C8

ratio of 20.5 3. Ten volume=-control cycles followed by ten
pressure=-ccntrol cycles were conducted within one cyeclic
series of the pree-bored pressuremeter test at a depth of 2.5
feet. Also performed in that test was é cycllic series of
ten pressure-control cycles followed by ten volume=control
cycles to reveal the relative effect on the cyclic degradaw
tion parameters (Figure T70}.

7.3.2 Cycllc Degradation Parameters

Figures T1 through T4 track the decrease in the secant
shear modulus with increasing cycles for each pressuremeter
test, The ratio of the peak c¢yclic pressure over the net
limit pressure (Pcp/P:) and the ratio of the increase in
probe radius over the deflated probe radius (y/R) at which
the cyclic test series were performed are indicated on the
figures. Also shown on the figures are the values of the
¢cyelle degradation parameter i, which i3 the neg:tive slope
of the regression line through each cyclic series.

Figure 73 indicates that for the second s3eries of
cycles, the preloading generated by applying a pressure
higher than the pressure level at which the cycles were
performed (Figure 69) lead to temporary smaller degradation.
For the first ten cycles (Figure 73) the g value is very
small; bowever, the beneficial effect of the preloading
seems to disappear after 10 cycles and the 3 value
ipc¢ereases. This, however, may be due Iin part to the fact

that the bottom of the volume~control cycles became too low
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to be reliable.

Comparing pressure-control and volume-control eyelie
pressuremeter tests (Figure 74), indicates that the volume=
control cycles degraded the secant shear modulus of the soil
significantly more than the pressure-control cycles. This
is consistent with the behavior of the cme-way cyclic model
pile load tests (Section U4.8),

In order to select ap appropriate 3 value for predic-
tion purposes, the 3 values found in the tests above were
plotted as a funetion of the relative incerease in probe
radius (Figure 75). The volume-control versus pressure-
control tests were disregarded and the average 3 value was
calculated to be 0,26.

T.4 Eushed-in Cope Pressuremeter (PCPMT) Resulta
T.4.1 Corrected Pressuremeter Curves

The corrected pressuremeter curves for the =ushed cone
pressureneter testshare presented in Figures 76 through
78. Volume-control cyelic tests were performed to simulate
the displacment-control cyclice pile locad tests. Three
levels of cycling were performed in each test with the
number of cycles varying between 10 and 50 at each level.
T.4.2 Cyclic DRegradatiop Fairameters

Degradation of the secant shear modulus with increasing
cycle numbers with the pushed cone pressuremeter eyelice
tests are shown in Figures 79 through 81, Cycling levels

are referenced by giving the relative peak pressure
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(Pcp/P:) and the relative radial expansion (y/R). It should
be noted on Figures 7% and 80 that the early part of the
degradation curves show less degradation (smaller slope 3 up
to approximately 10 cycles)., This is possibly due to the
temporary beneficial effect of the puabhing of the probe,
The pushing process compacts a certain zone around the
probe; early cycling involves thias stronger zone and leads
to smaller degradation. As cycling continues, this zone
weakens and the uncompacted natural. soll leads to larger
degradation.

The degradation parameters (3a) are plotted versus the
relative radial expansion in Figure 82, The average 3
value 1s 0.180 when all the data points are considered.
Whepn only the g values from the four testa with 50 cycles
are averaged, the result is a degradation parameter of 0.23.
This latter g value was chosen for use with the prediction
method presented in this report.

7.5 Driven=-ipn Cope Pressurepeter (DCPMT) Results
7.5.1 Corrected Pressuremgeter Curves

The corrected pressuremeter curves from the driven cone
pressuremeter tests are seen in Figures 83 through §86.
Taree series of 100 cycles each were run in the test at 4.5
feet in borehole D1; whereas three series of 10 cycles each
were run during the other DCPMT teastas,

T.5.2 Cyclic Degradatiopn Parameters

The progressive decrease in the secant shear modulus
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with inereasing cycle zumber i3 evident in Figures a7
through 90. In selecting the 3 value t¢o use for predicticn
purpeses, all the points except the first g value obtainped
in the 2.0 foot test in borehole D3 were averaged, yielding
~an 3 equal to 0.145, The data point (y/R, a) equal to (3.5,
0.248) was disregarded since its 3 value appeared erratic
with respect to the other, more clu=x.ered, data points
(Figure 91). The reasons for this erraticism may have been
the result of local disturbance around the probe, the low
peak pressure level, and the low number of total cycles
performed in the serieas.

The beneficial effect described in Section T7.3.2 and
7.4.2 shows up for the driven CPMT since the average g value
is 0.145 instead of 0.18 for the pushed CPMT and 0.26 for
the pre=-bored PMT. Judging from Figure 88, the beneficial
effect does not appear to be temporary or at least seems to
last longer than the beneficial effect on the pushed CPMT.
This tends to indicate that the driving process densifies a
zone of sand which is muc¢h larger than ﬁhezone densified by

the pushing proceass.
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8. PRESSUREMETER TESTS AT

TEIAS A&M UNIVERSITY LABORATORIES

8.1 Preasuremeter Type and Cycling Methods

Two pressuremeter test series were conducted-in the
laboratory at Texas A&M University (Table 6). The first
series included pressure-control cycling to simulate the
lcad=contrecl model pile tests while the second series used
volume~control c¢ycling to match the displacement-control
model pile tests. Each s2eries consisted of 3ix 2eparate
pressuremeter tests: one shallow and one deep test'for each
of the three different pile placement procedures employed in
the model pile testa (Figure 92). The cone pressuremeter
equipment and procedures (Sections 5.2 and 5.4%) were
employed im all of the laboratory pressuremeter tests,

8.2 Probe 2lacement Rnnsgdnzsa and Soil Copnditions

The probe placement procedures mirrored those of the
model piles, namely:

(1) the post-compacted, single 1ift procedure,
(2) the pre-compacted, single lift procedure, and
(3) the post-compacted, multiple 1ift procedure.

In the first procedure, the drum was filled with lcose
sand and the probe pushed ipte the sand'to a depth of
approximately 20 inches and the soil compacted around the
probe with a concrete vibrator, repeating the pattern in

Figure 25a twice, The deep pressuremeter test was then
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PRESSURE-CONTROL PMT TESTS

Soil / Placement Y 3 Depth ¥/ R a a a
Proecedure (1b/£t2)| (in) (%) average|selected
=
' 5.11 0.078
bost-compactaed 9,25 TR RISEL 0.096 | 0.096
. Single Lift 111 5.6 | 0.062
19.25 14.1]| 0.053 1 0.0656 0.0586
. 25.2 U.Usg
3.1 0.090
Pre~compacted 6.75 16.9 | 0.174 0.132 0.132
Single Lift 114 3.8 U708
19.25 9,5 0,078 0.087 | 0.087
11.3] 0.078 |
11.351 0.102
Post-compacted §.75 23.201 0.1034 9.133 0.133
Multiple Lift 112 1.1 0.083
: 19.50 2.9t 0.0601 0.068 0.068
9.21 0.058
VOLUME-CONTROL PMT TESTS
oil / Placement Depth ¥/ R a a a
Procedure (1b/2t3)] (1) (%) average|selected
- —rerarrr e —r————
9475 p? [o.2628 ; o
Post-compacted T.T10.180
Single Lift 111 1.0 [ 0,095 ] 0.179
20.7% Te2] 0.166 1 0.151
14,5 0.191
2.110.112
. .1
Pre=compacted 3.23 6.0 0.159 0.136
Single Lift 114 T.7] 0,128 0.138
20.7% 4.5 0,145 ] 0.139
T.8] 0,149
3.1 0.121 8
Post-compacted T.25 9.8 ] 0.135 | 0.12
Multiple Lirt 112 3.5 0C.714 0.140
20.75 .2 ]| 0.160 | 0.147
12.35] 0.1068

®* Disregarded when averaging 3 values.

Table 6.

Laboratories.

Pressuremeter Tests Performed at the Texas ALiM
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Figure 92. Profile of the Cone Pressuremeter Tests in the
Model Pile Test Drum at Texas A&M University.
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performed, including 3 ¢ycling series of 20 cycles each,
The probe was then carefully pulled to the shallow test
position, approximately 8 inches deep, and the top half of
the so0il recompacted using the concrete vibrator and the
pattern in Figure 25b. The shallow pressuremeter test was
then performed including 2 ecycling series of 20 cycles each.

The pressuremeter was then removed and the sand reconme-
pacted using the pattern in Figure 2%b, with the vibrator
penetrating fully into the drum. The probe was then driven
into the sand with a rawhide mallet to the shallow testing
depth and the pre=compacted, single l1lift procedure shallow
pressuremeter test was performed including 2 cycling series
of 20 cycles each., The probe was then driven to a testing
depth of approximately 20 inches and, with no further com=
paction, the deep test was performed 1nc1uding 3 eyeling
series of 20 cycles each.

The drum was then emptied and the probe positioned for
a deep test. Sand was then compacted around the probe in
six lifts of approximately six inches each. Compaction was
achieved by repetitively plunging the concrete vibrator inte
the 1ift in a spiral pattern beginning near the probe
(Figure‘ZSc). The pressuremeter test was then performed,
ineluding 3 series of 20 cycles, after which time the top
1/3 of the sand was removed. Thke probe was then reposi-
tioned at the shallow test depth and the sand added back to

the drum in 6 ineh 1ifts compacted as detailed above. The
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shallow tast was then performed with the standard 2 series

of 20 c¢ycles each.

8.3 Rreasure-control Pressuremeter Test Results
8.3.1 Corrected Pressuyremeter Curves

The corrected pressuremeter curves for the pressure-
control test 3series are presented in Figures 93 through 98.
On Figures §5, 97, and 98 the curve indicates that expansion
of the probe was necessary to come in good contact with the
soil even though the so0il was compacted around the probe.
This was due to the fact that sand grains became more and
more entrapped between the overlapping steel strips as the
testing program progressed, Indeed, it 13 the reccmpression
of the graine-filled steel strips which shows up at the
beginning of these pressuremeter curves. The effect of this
phenomencn on the finral predictions was taken into account
in the preparation ¢f the P-y curves Dby translating the
origin of the curve to the intersection of the linear por-
tion of the pressuremeter curve and the at rest horizental
earth pressure (Section 9.3.3).
8.3.2 Cvelic Degradatiopn Parameters

Figures 99 through 104 display the decrease in the
secant shear modulus with inc¢reasing c¢ycele numbers for the
pressure-control c¢yelic pressuremeter tests. The 3 values
as found from the slope of the regression lines are plotted'
as a function of the relative increase in probe radius, y/R

(%), in Figures 105, 106, and 107: one figure for each probe
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placement procedure. The average 3 values for each test
series are tabulated in Table 6. Due to the dissimilar
magnitudes between the shallow and deep tast a values, an
average value for each test depth was selected for use in
the pradiction‘process.

8.4 Yolume=coptrol Pressyremeter Teat Besultgs

8.4.1 Corrected Presauremeter Curves

The corrected pressuremeter curves for the veclume~con=
trol cyclic test series are shown in Figures 108 through
113. These curves also display the problem {(desacribed in
Section 8.3.1) associated with the sand lodging between the
steel strips.

8.4.2 Cvyglic Degradation Parameters

The secant shear modulus degradation with ;ncreasing
cycle number for the volume~mcontrol tests are seen in
Figures 114 through 119, The a values are plotted versus
the relative radial expansion y/R in Figures 122, 121, and
122, The variation between shallow 3 values and deep 3
values was not as prenounced as inp the pressure-control
tests (Table 6), and only a single average 3 value was
chosen for each placement procedurae,

The following reason is given for the above differen-
ce: Close to the surface there i3 a lack of vertical con-
finement. Due to this lack of vertical confinement a PMT
test close to the surface shows a well defined limit to the

horizontal pressure which can be applied (Figure 112}, This
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is not the case for a deeper PMT test {(Figure 113), The
influence of vertical pressure confinement on the degrada-~
tion in cyelic tests is that: (1) the degradation is more
severe for the shallow teat than for the deep test (Table
§), and (2) for shallow pressure-control tests the degrada-
tion is more severe at large y/R than at small y/R (Table 6)
8.5 Pressyre=-contro. ¥3. Yolume-control Degradation
Parageter Comparison

The degradatiorn parameters found in all of the ecyclic
pressuremeter tests have been tabulated (Table 6). The re-
sults indicate higher degradation of the spils exposed to
volume=control cycling than those where pressure-control
cycling was executed. This result agrees with that of the
preasure=-control versus volume=-control test performed at the
Univeraity of Houston sand deposit with the TEXAM probde
(Section T7.3.2).

As pointed out in section 8.4.2, degradation during
pressure-control tests was more greatly influenced by over=-
burden pressure than degradaticn during volume-control
tests, TFigures 123 and 124 present the 3 values from Table
6 plotted versus the test depth., The pattern for the pres-
sure=control tests indicate decreasing a v:lues with
increasing depth. The volume-control a values do not ref=-
lect a similar trend. Also, the greater spread in data
obvious in the volume-control tests may indicate that the

cycelic degradation parameter 3 is more dependent upon the
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relative displacement level for volume=-control cyeling than
for pressure-control cycling. Generally, a increased with
increasing locad levels during volume-control eyclic tests,
whereas 3 values did not show any particular trenda as load
levels were increased during pressure-control ceyelic tests
(Table 6). Therefore, it is advisable to pay particular
care to match the load level of the pressuremeter cycles to
those anticipated during the cyclie loading of the pile when
modeling a displacement-control pile load test.

The sensitivity of pressure-control cycling to overbur-
dep pressure may not be as great a factor in predicting
full-scale pile responses as it played in the model pile
teats., It is unlikely that pressuremeter tests would be
performed for full-scale pile predictions at depths as shal-
low as those performed for the model pile tests, As the
depth of the pressure~control ¢yclic pressuremeter tests

increased, the g values tended to stabilize (Figure 123).
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9. PROPOSED PREDICTICN METHOD

9.1 Prediction Approagh

There 18 a physical analogy between the ¢cyllndrical ex=
pansion of the pressuremeter and the lateral movement of the
pile. A microcomputer program, PIPMT (Little, et al.,
1986), was developed during this study to generate automa-
tically the Pey curves from the pressuremeter curves as
recommended by Briaud, et al. {1985b). The Py curves were
then input into BMCOLT, a beam column program written by
Hudson Matlock (Coyle, 1986), to obtain the predicted
deflections of apile aubjected to a given set of lcads.,
9.2 Iheoretical Basis
9.2.1 Ihe P-v Curve Compopents

The Pey curve (Matloeck, 1970, and Reese and Desai,
1977) describes the soil resistance to the lateral displace-
ment of a horizentally-lcaded pile at a particular depth. At
a depth "z" along the pile, the "y" symbol represents the
horizontal displacement, and the "P" symbol represents the
total s0il resistance in force per unit length asscciated
with the displacement "y". Although several various stresses
contribute to the total soil resistance (Figure 125), in
piles with a diameter-to-length ratio greater than 3 tke
majority of so0il resistance is the result of the front
resistance, Q, and the friction resistance, F (Figure 126).

At the s0il interface of a horizontally lcaded pile a
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normal stress, o and a shear stress,r exist (Figure

rr? re!

126). The elementary forces per unit length of the pile may
be determined by resolving the stresses into their ccm-

pcnents in the direction of loading:

dF = 1. rg sind 44 {(13)
and

dQ = 9., r, cosd df (14)
where

dF = the elementary force per unit pile length due

to the component of rg

dQ = the elementary force per unit pile length due
to the component ofa".
ry = the radius of the pile

the angle between the directicon of the
lateral load and the direction of o_...

rr
If friction and front resistances on the back face of the
pile (opposite to the direction of travel) are disregarded,
the total friction and front resistances per unit length of

the pile are cobtained through integration:

m
F:/’zrm r, aind 44 {(18)
-”/2
and
ﬂ/: 4
Q = 9p To cosd d¢ (16)
~7R
where

F = the total friction resistance per unit length
of pile ‘
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Q=the total front resistance per unit length of
pile.
Baguelin, et al, (1977) provide expressions for the normal

and shear stresses at the scil=-pile interface in an elastic

medium:
Opp = pp(max) cosd (17)
Trg = Tpg(max) sind (18)
where
9.n(max) = P/(2 r 7/4)
reg (BaX} = P/(2 r m/4)

P = the force per unit length in the
8 = 0 direction.

Solving equations (15) amnd (16) after substituting the
expressions in (17) and (18) yield:

F rrB(max) 2r° T/ Y (19)

and

Q = arr(max) 2r T/ 4 {20)

These two resistances, F and Q, may then be added to obtain
the total scoil resistance, P, per unit length of pile for a
given deflection, y.
9.2.2 Ike Q-y Curve and the Pressurepeter Curve

The distribution of elementary forces per unit pile
length, dQ, around the face of a pile predicted using equa-
tion (14) was found to closely match the same distribution
as measured using pressure cells (i, B, and C in Figure 127)

0o a laterally-lcaded bored pile (Briaud, et al., 1983 and
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Smith, 1983). Thus i{f the peak stress, arr(max), can be
experimentally determined, the Q-y component cf the P=y¥
curve may be developed using equation (20).

Pre-bored pressuremeter tests were performed near the
laterally-loaded pile (Smith, 1983). A comparison tetween
the P versus y/R curves for the pressuremeter and the presgs-
sure cell on the pile (Figure 127) indicated very close
agreement (Briaud, et al., 1983 and Saith, 19823). For the
pressuremeter} P 13 the pressure on the borehole wall and
y/R is the relative increase in cavity radius. For the
pressure cell, P i3 'he pressure against the cell located
along thé loading axis and y/R is the horizontal displace-
ment of the pile over the pile radius. This suppoerts the
use of pre-bored pressuremeter tests for obtaining the pre-
dicted front resistance curve for a bored pile.

For full-displacement dfiven piles (either 2. ose-ended
"piles or open=ended Plles that plug during insertion) the
front resistance would most likely be different from that
experienced by a bored pile in the same soil. To more
closely maintain the analogy between pressuremeter and pile,
it may prove most beneficial to employ driven pressuremeter
results in the development of driven pile Q-y curves. An
alternative approach would be to use the reload curve from
pre-bored pressuremeter tests. In this approach, after
placing the pressuremeter in éhe pre«bored hole, the probe

is partially inflated once to simulate the stresses




|
(Te

transferred to the soil during pile driving and then the
probe i3 reipnflated to obtain a reload curve to failure.
The Qmy curve is then derived from this relcad curve,
9.2.3 Ihe E-y Curve and the Preasuremeter Curve

Baguelin, et al, (1978) have shown that the soil shear
stress-atrain curve can be derived from the self-boring
pressuremeter curve through use of the theoretical subtan-
gent method., This same method, when applied to the results
from pre-bored pressuremeter tests, consistently ylelded
shear moedull which were tco low and peak shear strengthas
which were too high. Bowever, applying the subtangent
method to the reload curves of pre-bored preasuremeter tests
led to shear modull comparable to those obtained with aself-
boring pressuremeter tests (Baguelin, et al., 1978). There-
fore, when pre-bored pressuremeter tests are used, the pro-
posed approach is to employ the relocad curve 0 derive the
Fey component of the soil resistance curve for both driven
and bored piles.
9.3 Ihe Briaud-Smith-Meyer Method

The analogy of locading between the pressuremeter and
the pile is not complete and the pressuremeter curve is not
identical to the P=-y curve. It has been shown that the
pressuremeter curve gives the Q-y curve, and that the F-y
curve can be obtained from the same curve. The P-y curve is
the addition of the Q-y and F-y curves, The followlng is a

summary of the method which is proposed to obtain the P=-y
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model from the pressuremeter curve (Briaud, et al., 1985b
and Briaud, et al., 1985¢).
9.3.7 Ile EPressyremeter Curve

The pressuremeter curve is a plot of the pressure on
the borehole wéll versus the relative increase in probe
radius. Figure 128 shows a typical pressuremeter curve with
one unlcad=reload cyclas. This ¢cycle i3 necessary in the
applicaticn of this method. The unloading should start at
the end of the linear range of the pressuremeter curve and
continue until the pressure i3 reduced to one-half the
pressure at the start of unloading (Figure 128). At this
point reloading is commenced and continues until the limit
pressure can he determined.
9.3.2 Iotal Horizoptal Pressure at Rest

The total horizontal pressure at rest, Pyg, may be

calculated as:

POH = [(aov - Uo) x KOH]"’ Uo (21)

where,
Coy = the vertical total stress at testing depth
before tesating
U° s pore water presaure at testing depth before

testing

KOE = estimated coefficient of bhorizontal earth
pressure at rest,

Alternatively, POH can be taken at the point of maximum
curvature on the initial part of the pressuremeter curve

(Figure 57).
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9.3.3 Iranaslation of Origin

To obtain a corrected curve, the crigin must be tran-
slated to correspond with Pog (Figure 129). As shown on the
figure, the linear portion of the curve should be extrapo-
lated bacﬁ to POH' thus defining the new origiq. It POH
cannot be calculated by equation (21) it may be estimated to
be equal to the pressure corresponding to the point of
maximum inflection on the initial portion of the pres-
suremeter curve (Figure 128).

The reload ¢ycle of a pre«bored test has been shown
(Smith, 1983) to better approximate an undisturbed test and
generate shear strength values in good agreement with
laboratory values. The reload cycle should therefore be used
to obtain the F-y curves for all piles, both driven and
augered, when ére-bored pressuremeter data 13 used, For
bored piles, or piles driven open-ended which do not plug,
the front reaction, Q=y, curve is developed from the initial
curve of a pre-bored test. For full-displacement piles the
reload cycle is used for the front resistance. This 1is

summarized below in Table 7:

Pile Tvpe
! Cu:vg__ —_——rlliyen -1e) J -1 S
Fey Reload Cyecle Reload Cycle
Q=¥ Relcad Cycle Initial Cycle

Table 7., When to Use the Reload and Initfal Cycles in
Pressuremeter=-derived P-y Curve Developement.
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When the reload cycle is used, the linear range is
extrapolated back to Pog to obtain the full curve (Figure
129).

The notation used to define these curves is as follows:

P

H

pressuremeter pressure

.
P = net pressuremeter pressure (P=Poy)

POH = horizoantal earth pressure at rest
Ro = initial probe radius before inflation
ARp = increase in probe radius
AR = increase in probe radius necessary to reach Pog

(éﬁ) relative radial incerease of probe when POH is
Ro/ reached

Re initial cavity radius = AR + Ro

ARc = increase in cavity radius,

9.3.4 Cpritical Depth for the Pressyremeter

The pressuremeter is subject to a reducticn of soil
resistance at shallow depths. The reduction factor is shown
ip Figure 130 as a function of the ratio of the test depth,

Z, to the ceritical depth, 2 The critical depth as recoz=-

c.
mended by Baguelin et al. (1978) is:

Zc = 30 R for cohesive soils
(22)

zc = 60 R for cohesionless soils

where R 1s equal to the pressuremeter radius. The pres-
suremeter curve is corrected into a curve which would not

have the influence of shallow depth by taking:

Pl
corr ; -;- (23)
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where

Pcorr = corrected net pressure

) ¢ reduction factor for pressuyremeter eritiecsl

depth (Figure 130),

X {3 equal to unity when the pressuremeter is below its
eritical depth. This curve is then used to obtain the Q-y

and F=y curves,

9.3.5 Front Resistance

The front Resistance of the pile, Q, is calculated by:

Q=—>P<—xBxSQx¢ (24)

where
SQ@ = pile shape factor: 1 for square piles loaded

parallel to their sides, 0.8 for round piles and
square piles not loaded parallel to their sides

B
¥

Plle diameter or width

pile front resistance reduction factor witk pile
eritical depth (Section 9.3.6).

9.3.6 Accounting for the Pile Critical Depth

To account for the reduced soil resistance near the
ground surface (within the pile's critical depth) the front
reaction, Q, is multiplied by a reduction factor, ¥. The
reduction factor is given in Pigure 131. The average criti=-
cal depth for the pile, Z,(av), 12 a function of the rela-
tive pile/soil stiffness and is given by the greater of:

Z,(av) = (7#/%) (RR=5) (B)
' or (25)

Zc(av) = B
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Figure 131. Proposed Reduction Factor for
the Pile within the Critical Tlepth
(From Briaud, Tucker, and Olsen, 1985).
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The relative rigidity factor, RR, is given by:

4
- 1 lEI ,
L
where
EI = pile flexural stiffness
PE = net pressuremeter limit pressure

The correlation between RR and Zc(av)/B is shown in Figure
132 with measured data also plotted.
9.3.7 Rdle Digsplacement

After having translated the corrected pressuremeter
curve (Figure 129 and Section 9.3.3) and rescaling the
horizontal axis to the relative increase in borehole cavity
radius (ARe/Re), the pile displacement, Ypil1er 18 then

calculated by:

.{ARe
ypile '(Rc ) x Rpile (27)

where Rpile is the pile radius.
9.3.8 Erigtion Reaistance

The friction resistance is determined through the fola-
lowing procedure, The slope of the preasuremeter curve at a
point is assumed to be the slope of the line Joeining the
point before and the point after the point considered
(Figure 133). Thus the slope of the curve may be caliculated

by:

RE (28)
X Ia = Ip / X
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E = Mpodulus of Pile Material
I = Inertial Moment of Pile
A P* = Net Pressuremeter Limit Pressure

L
B = Pile Diameter or Width
a8k Zc = Critical Depth
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B Lock & Dam 26
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Figure 132. Critical Depth as a Functiom of Relative Rigidity (From
Briaud, Tucker, and Olsen, 19853).
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T2 ____Slope of this line is

slope at point §

P*

Figure 133, De—termining the Slope.
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Pa = net pressure for the point after the point

considered
]
Pb = net pressure for the point before tke point
considered
xa = relative change in radius for the point after the
point considered
¥y, = relative change in radius for the point before the
peint considered
Ap"
CZE-)= slope for the curve at the point considered

reduction factor for the pressuremeter c¢ritical
depth.

The shear stress, , mobilized by the pile {8 calculated fronm

the slope of the curve:

; Aar*) (1
r = X (1+I) (A_X-) (T) (29)

where

X = the relative increase in radius for the polnt
considered.

The friction resistance, F, mobilized on the pile is then
determined as:
F= rxB x SF (30)
where
SF = shape factor for the pile: 2 for square piles loaded
parallel to their sides and 1 for round piles and
aquare piles not loaded parallel to their sides.
No pile critical depth reduction factor is applied to the

friction component since overburden pressure does not appear

to significantly affect frictional resistance on the pile.
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9.3.9 Iotal Resistance
The total resistance 1s the sum of the front and fric-
tion resistances:
P=TF + Q {31)
where |

P = the total soil resistance on the pile {(force per
unit length of pile),

9.3.10 Rase Resistance on a Rigid Pile

The mobilization 6f shear resistance upon the base of a
rigid rotating pile may be significant. The shear stress is
assumed to be mobilized linearly and toe reach the shear
strength at a tranmslatiocn of 0.1 inches. If the beam colunmn
program used is not equipped with a se-arate base fricticn
model, the base frictional resistance may be added tc the

deepest P=y curve as follows:

Fy = S x(ip) (32)
§
where
Fb = base mobilized resistance

d = fipnite difference increment length for the pile

=
b o)
L]

area of the base

= shear strength of soil at the depth of the base.
The units of Fb are therefore forc¢ce per unit length, and
consistent with those of F and Q. The base P«y curve only is
then given by:

P=zQ+ F + Fi (33)
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9.4 Precisiop of the Briaud-Smith-Mever Mopotonic Method

Pre-bored pressuremeter teats were conducted next to 27
piles on which horizontal load tests were performed (Table
8. Pey curves were then derived from the corrected press
suremeter resulés using this pressuremeter method. The Py
curves coupled with a beamecolumn program were used to
obtain predicted horizontal lcad versus horizontal deflec=
tion curves for the pile tops. The pressuremeter-derived
predictions were compared to the measured results at two
different deflection levelas: at 2% of the pile diameter to
represent small, working load movementa; and at 10% of the
pile diameter to represent the ultimate capacity. The com=-
parisons of the predicted and measured loads are plotted in
Figures 134 and 135, showing a very satisféctory prediction
of measured pile behavior using this method for static
loading. It is significant to note that the Load tests
included a wide range of pile types and sizes as well as a
variety of soils. Also, only piles 1=-7 were used in the
development of the method and several pile predictions were
made prior to the availability of the actual load test
results (Briaud, 1986).

9.5 Assumptions and Limitations ip the Microcomputer Progranm
2IRMT

Assumptions and limitations inbherent in the PYPMT rpro-
gran (Little, et al., 1986) based on this pressuremeter

method are listed below.
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Pile Pile Pile Pille
I.D. Site Type Embedded Diameter Soil
No. Length
{m) (m)
1 Sabine Pipe 12.2 0.32 Zlay
2 Mustang I=. Pipe 21.0 0.61 Sand
3 Lake Austin Pipe 12.2 .32 Clay
4 Houston Bored 13.0 0.76 Clay
5 Texas A&M (1977) Bored 6.1 0.91 Clay
6 Texas A&M (1978) Bored 4,6 0.76 Clay
7 Texas A&M (1979) Bored 4.6 0.76 Clay
8% 7, of Houston H 11.8 0.27 Clay
9% U, of Houston Pipe 11.4 1.22 Clay
10 L&D 26 (1983) HP14xT73 20.4 0.36 Sand
11 L&D 26 (1983) HF14x73 20.4 0.36 Sand
12 L&D 26 (1978} H 15,2 0.36 Sand
13 L&D 26 (1978) Pipe 18.2 0.36 Sand
14 Virginia Bored 3.5 1.37 Clay
15 Carolina Bored 4.5 1.37 Sand
16 Iowa Bored k.8 1.37 Clay
17% LADWP Delta Bored 3.0 0.T4 Sand
18% LADWP Caliente Bored 3.0 0.7T4 Sand
19% LADWP Alamo Bored 3.0 0.65 Clay
20 Baytown Bored 11.9 0.61 Clay
21% Lackland Bored 10.5 0.46 lay
22 La Baule 1 R.C. 6.0 0.61 Sand/Clay
23 La Baule 2 R.C. 6.0 0.61 Sand/Clay
24 Planoccet Caisson 4.4 0.95 Silt
25 Planoccet H 6.1 0.36 Silt
26 Cubzac Pipe 24,7 0.91 lay
27 Provins Pipe 23.0 0.93 Silt/Peat

% Load test results unknown at time of predictions.

Table 8. Monotoniec Lateral Load Test Data Base
(After Briaud, 1986).
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9.5.7 Additicn of the Q=v 3nd F-v Curveg

In the pre-bored pressuremeter/bored pile case the
scales for the displacement values of the front and friction
curves are not identical. The addition of the curves to
obtain the P=-y curve 13 achieved by linearly interpolating
to determine a Q value corresponding to each y value from
the F-y curve and linearly interpolating to determine an F
value corresponding to each y value from the Q-y curve.
When no calculated value of resistance exists beyond a y
value, the last resistance value is aasumed constant for any
further pile displacement.

9.6 Rroposed Method for Cyclic Predigtions

The proposed approach for predicting the response of
plles subjected to cyclic lateral loading in sands involves
modifyling the static P=y curves, obtained through the pres-
suremeter method detailed ;bove, for cyeclic degradation.

To modify a statiec P=y curve, the number of cycles at
which the pile response is to be predicted 1ia first deter-
mined., Eachk value of P from the monotonice P-y curve 1s then
multiplied by N™2 to obtain P(N), the force per unit length
of pile necessary to diaplace the 30il to the corresponding
y value after cycling N times. The 3§ values were selected
as detailed in Section 6.6, This is summarized in Figure
136 and in the following equations:

P(N) P(1) x §°2 (34)

y{1) (35)

y(N)
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Figure 136. Generation of the Cyclic P-y Curve from a
Pressuremeter-derived Monotonic P+«y Curve,
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where
N =z ¢yele number for which the P=y curve 1a desired

P(1) total soil resistance arrived at in static analysis

1]

P(N)

total scil resistance arrived at after N cycles

a = cyclic degradation parameter obtained from the
pressuremeter tests

y(N) the displacement after N cycles

y{1)

the monotonic¢ displacement.
This model has previcusly been employed in a study of the
response of the University of Houston test piles in clay
(Makarim aad Briaud, 1986) with promising results.

The ¢yclic P=y curves were then input as resistances
into a beam column program to obtain the predicted deflecw
tions of a pile subjected to a given s2et of cyclic lateral

loada,
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Figure 141, Predicted Monotonic Response of the Single Pile
Compared to the Measured Response: Pushed-in
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pushed pile. For the pre-bored PMT the P-y curves were
obtained by assuming that the pile was a bored pile in the
sand and a driven pile in the clay below. The closeness
between the predicted 2nd measured response (Figure 140)
shows taat the compaction of the sand around the pile simu=-
lated more closely the conditions around a bored pile.

10.2 RPressuremeter Predictions for the Model Piles at the

Iexas A&M Universify Laboratories

The predictions for the model pile tests were made
using methods identical to those used in the prediction of
the 10.75 1inch pile behavior. For the generation of P-y
curves, the model piles for which placement entailed post-
compaction were treated as bored piles. The others were
driven piles and treated as suckh.

Twelve comparisons between predicted and measured gong-
tonic behavior are presented in Figures 143 through 154,
Overall the precision of the monotonic predictions is very
good both for the one-way and two=-way model pile load tests
as can be judged from the figures. Ope exception is Figure
147, In this case, the pile test L3 not considered as
reliable. Indeed, the pile was unusally weak as compared to
the similar case of Pigure 153.

The monotonic measured responses are defined here as
the first cycle envelopes of the cyclic tests, Also, the
monotonic predictions are based on the first cycle envelopes

of the PMT test curves, This may bave had an effect on the
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Figure 143, Predicted Monotonic Response of the Model Pile
Compared to the Measured Response: Post=-
compacted, Single Lift, Pile Placement
Procedure; One-way, Load=control Cycles.
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Figure 144, Predicted Monotonic Response of the Model Pile
Compared to the Measured Response: Pre=
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Procedure; Cne=way, Loade=control Cycles.
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Figure 145, Predicted Monotonic Response of the Model Pile
Compared to the Measured Response: Post-
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Procedure; Cne~-way, Load-control Cycles.
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Figure 146, Predicted Monotonic Response of the Model Pile
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Figure 148, Predicted Monotounic Response of the Model Pile
Compared to the Measured Response: Post-
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Figure 152, Predicted Monotonic Response of the Model Pile
Compared to the Measured Response: Post-
compacted, Single Lift, Pile Placement
Procedure; Twoeway, Displacement-control Cycles,
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Figure 153, Predicted Monotonic Response of the Model Pile
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Procedure; Two-way, Displacement-control Cycles.




comparisons.
10.3 Compardson of Predicted and Measured Mopotoplc

Bespopses
10.3.1 Siogle Pile at Undversity of Houatop

A comparison of the predicted load~displacement respon-
ses and the measured response for the 10.75 inch pipe pile
(Figures 140, 141 and 142) shows that the pre-boring TEXAM
probe provided the closest correlation to the actual pile
response. This 1s due to the fact that the pre=boring pres-
suremeter came the closest to duplicating the pile installa-
tion technique., The stiffer initial response in the predic-
ted curve 13 not surprising considering that the pressaure=-
meter tests were conducted a:ter the pile load tests, during
which densification in the sand between the pile group and
the single pile was visually evident (Section 3).

Figure 155 1is a comparison of the pilile's maxizmun
bending moment as predicted by the TEXAM pre-bored tests
with the measured monotonic response. The predicted moments
alnso indicate a stiffer initial soil response than actually
experienced by the pile; nonetheless, the curve does agree
well with the measured resultas.

Pressuremeter-derived monotonic P=y curves at the mea-
sured P-y curve depths were found by linearly interpolating
between the P=~y curves derived from the pre=bored pressure-
meter teats, The comparisons between predicted and measured

monoctonlic P-y curves are plotted ir Figures 156 through 158.
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The pressuremeter P=-y curves compare very favorably with the
measured responses.
10.3.2 Model Piles at Texas AiM University

The static predictions for the model tests are presen=
ted with the measured results in Figures 143 through 154.
The range of pressuremeter-predicted monotonic responses are
compared to the range of measured responses in Figures 159
and 160. The twoe-way loadecontrel and displacement-control
predictions were coastructed by projecting a mirror image of
one-way predictions intc the negative quadrants.

Overall, the predictions are very good as can bhe seen
from the figures. Table 9 shows the ratios of precicted
over measured load at deflections of 0.03 inches and 0.10
inches for all load tests. These deflections correspond
approximately to 2% and 8% of the pile diameter

respectively.
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Figure 159. Range of Pressuremeter-predicted Monotonic Res-
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Responses: One-way Cyclic Model Pile Load Tests.
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11+ CICLIC PREDICTIONS

11.1 FEredictions for the Jingle Pile at the Universitv of

douston Jand Site

The c¢yclic degradation parameters selected from the de-
crease in the secant shear modulus with increasing cycles
(Section 8) are presented im Table 10. These parameters
were applied to the pressuremeter-derived static P-y curves
to develope sets of cyglle P-y curves in the sand. In alil
cases, the degradation parameter fﬁr the clay was assumed to
be a constant, egqual to 0.06, the value found in a previous
study (Makarim and Briaud, 1986), These newly derived cyclic
P=-y curves for the sand and the clay below were then input
inteo BMCOLT, a.bea:'column program written by BHBudson Matlock
(Coyle, 1986), to model.the soil resistance. The resulting
cyclic predictions are depicted in Figures 161, 162; and
163,
11.2 Predictions faor the Model Piles at ithe Texas A&M

Jpiversity Laboratories

The degradation parameters selected for use in the
model pile predictions (Table 6) resulted in the cyclic
predictions presented in Figures 164 through 175. The
method employed (Section ¢) made no distinction between two-

way and onee-way loading.
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Fressuremeter Insertion Cyelic Degradation
Type Method Parameter Selected
| — : ———— e
TEXAM PMT Pre=-bored 0.26
Cone PMT Pushed=-in 0.272
Cone PMT Driven-in .15

Table 00, Cyclic Degradation Parameters Selected for Pre-
dicting the Response of the 10.75 inch Single Pile.
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Figure 1461, Predicted Cyclic Response of the Single Pile:
Pre-=bored TEXAM PMT.
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Figure 162, Predicted Cyclic Response of the Single Pile:
Pushed=in Cone PMT.
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Figure 163, Predicted Cyclic Response of the Single Pile:
Driven-in Cone PMT.




TOP LATERAL LOAD (lbed

Figure

238

TEXAS A&M UNIVERSITY LABORATORIES

T L

rlrl-riu .,l

PREDICTED CYCLIC RESPONSE 7

'TT"' lrrrl'lrx

FOR THE 1,361

POST-COMPACTED,

ONE-WAY,

inch MODEL PILE -

SINGLE LIFT
LOAD=-CORTROL

1

10

Post-compacted,
Procedure;

—
e A R A l 2 A A 'y 1 e 2 b1 A ’ i 1 & N B I A A A 1 I Il . F i
8 .85 .1 .15 .2 .8 .3
TOP HORIZONTAL DISPLACEMENT (in)
164, Predicted Cyclic Response of the Model Pile:
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Figure 165, Predicted Cyclic Response of the Model Pile:
Pre-compacted, Single Lift, Pile Placement
Procedure; One-way, Load-control Cycles,
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Figure 166. Predicted Cyclic Response of the Model Pile:
Post-compacted, Multiple Lift, Pile Flacement
Procedure; One-way, Load-control Cycles.
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Figure 167. Predicted Cyclic Response of the Model Pile:
Post-compacted, Single Lift, Pile Placement
Procedure; One-way, Displacement-control Cycles,
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Figure 168, Predicted Cyclic Response of the Model Pile:
Pre-compacted, Single Lift, Pile Placement
Procedure; One=-way, Displacement-control Cycles,
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Figure 169, Predicted Cyclic Response of the Model Pile:
Post-compacted, Multiple Lift, Pile Placement
Procedure; One-way, Displacement-control Cycles.
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Figure 170. Predicted Cyclic Response of the Model Pile:
Post-compacted, Single Lift, Pile Placement
Procedure; Two=way, Load=-control Cyecles.
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Figure 172. Predicted Cyclic Response of the Model Pile:
Post=compacted, Multiple Lift, Pile Placement
Procedure; Two-way, Load=control Cycles,
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Figure 173, Predicted Cyclic Response of the Model Pile:
Post=compacted, Single Lif%t, Pile Placement
Procedure; Two-way, Displacement-control Cycles.
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Figure 174, Predicted Cyclic Response of the Model Pile:
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11.3 Comparison of Predicted apd Measuyred Cvellc Responses
11.3.1 Single Pile at University of Houston

Table 11 compares the percent loss predicted at a given
load and cycle number with the measured response. The
percent loss is the percentage drop 1in the load necessary to
deflect the pile to a given displacement value (Figure U8),.

As &an be seer in Table 11, the pressuremeter predicted
a percent loss much greater than the measured percent loss.
The reason for this large difference 13 that the pile load
tests were two-way ¢yclic load tests while the pressuremeter
{38 a one~-way cyclic lcad test. As was shown in the data
base study and in the model pile study, the degradation in
one-way cyclic pile load tests in sand 1s much larger than
the degradaticn in two=way cycllc pile lcad tests in sand.
One can therefore speculate that Bad the pile load test been
a one=way c¢yclic test the pressuremeter predictions would
héve been muqh clecser. This point was confirmed by the
model pile load test results.
1°.3.2 Model Piles at Texas A&LM University

Tables 12 through 15 compare the percent loss predicted
with the measured values from the model pile tests.
Cverall, considering the poessible variationms in so0il
preparations, the predictions are very close to the measured
behavior for the cne-way cyclic pile load tests,

The two-way cyeclic predictions failed to account for

the stiffening of the soil-pile response encountered in the
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Percent Loss After 100 Cycles

Leoad
Measured PEPMT PCPMT DCPMT
(kips) Predicted | Predicted | Predicted
b e —— ]
10 5 52 50 36
15 6 52 48 35
20 6 50 48 35
Table 1. Predicted Loss of Stiffness Compared to the Measured

Response of the 10.75 inch Single Pile:

Displacement~control Cyeling.

Two-way,
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ONE-WAY PRESSURE/LOCAD-CONTRCL CYCLING

Soil/Placement Load Cycle % Loss 4 Loss
Procedure {(1bs) } Number Measured Predicted
—
10 12 10
2.2 20 16 13
Pestwcompacted 10Q 14 8
142.8
Single Lift 20 18 11
10 20 7
213.
3.3 20 23 9
average 17 average 10
72.2 10 8 15
20 12 17
Pre-compacted 142.8 10 10 10
Single Lirt : 20 13 13
10 12 ]
209.3 20 15 11
average 12 average 12
10 13 7
2.2
7 20 19 13
Post~compacted 142.8 10 12 5
Multiple Lift * 20 17 T3
10 15 7
170.0
7 20 18 9
average 16 average E]
overall averages 15 1¢

Table 12, Predicted Loss of Stiffness Compared to the
Cne-way,

Measured Response of the Model Pile:
Load=-control Cycling.
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ONE-WAY DISPLACEMENT/VOLUME=-CONTROL CYCLING
Boil/Placement Load Cyecle £ Loass $ Loss
Procedure {lbs) | Number Measured Predicted
50 10 11 17
20 15 21
Post-compacted 75 10 14 16
Single Lift 20 18 23
10 20 18
120
2 20 23 24
average 17 average 20
10 21 10
4 .
0 20 23 16
Pre-g¢compacted 80 10 T4 11
Single Lift 20 18 15
110 10 14 12
20 24 18
average 19 average 13
40 19 T 2
20 11 17
Post-compacted 80 10 11 13
Multiple Lift 210 T3 T
10 13 14
1
20 20 16 19

average 12

average 16

cverall averages 16

Table 13. Predicted Loss of Stiffness Compared to the
Measured Reaponse of the Model Pile: One-way,
Displacement-control Cyeling.
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TWO0-WAY PRESSURE/LOAD-CONTROL CICLING

Soil/Placement Load Cycle % Loas %4 Loss
Procedure {lbs) Number Measured Predicted
50 10 1 9
20 -1 10
Post-compacted 90 10 11 8
Single Lift 20 10 9
' 10 g 8
130
3 20 19 10
average T average g9
20 -10 13
Pre=compacted 110 10 2 10
Single Lirft 20 -3 14
10 2 11
150
3 A =3 E
average =3 |average 12
10 1 14
8
i 0 20 0 18
Post-compacted 100 12_ 3 HIE]
Multiple Lift 20 -1 17
10 ] T
150 -
> 20 5 15
average 2 average 15
overall averages 2 12
Table 14. Predicted Loss of Stiffness Compared to the
Measured Response of the Model Pile: Two-way,

Load=control Cyeling.
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TWO=-WAY DISPLACEMENT/VOLUME=-CONTROL CYCLING

Soil/Placement Load Cycle $ Loss % Loss
Procedure (lbs} | Number Measured Predicted
60 10 =12 15
Poste-compacted 20 -8 21
Single Lift 120 10 ) 18
‘ 20 24
average -7 average 20
Pre-compacted 20 =57 11
Single Lift 120 10 -15 11
20 -18 16
average -35 average 11
20 =10 E
Post=-compacted 100 10 -3 13
Multiple Lift 20 =7 1%
10 2 14
14

0 20 1 17
average =4 average 14
overall averages =114 15

Table 15. Predicted Losa of Stiffness Compared to the
Measured Response of the Model Pile: Twoeway,
Displacement-control Cyeling.
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model pile tests, and thus the predictions generally greatly
overpredicted the cyclic degradation of the secant shear
modulus for the two-way model pile load tests.

This points out again that the pressuremeter is a one-
way cyclic toél and can predict the one=-way horizontal
cyclie response of piles. The degradation of scil stiffness
in two-way c¢ycllec lateral loading of piles ip sand i3 very
small compared to the degradation in one-way cyclic lateral
loading and 1s often negligible., As a3 result, the pressure-
meter largely overestimates the stiffness degradation of

piles subjected to two-way cyclic lateral loading.
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12. SUMMARY AND CONCLUSICNS

To aid in summarizing the results of this project, the
cyelic degradation parameters a3, as defined in Figure 1, for
the fulle-scale locad test on the 10.75 ineh diameter single
pipe plle and for the load tests on the model plile have been
plotted together with the original data base of piles sube-
jected to cyeclic lateral loading in sands (Figure 175).
From this expanded data base, some general observations may
be made: |

(1) The g values ranged from +0.264 to =0.7138 with a
mean of +0.038 and a standard deviatiomn of 0.056.

(2) The 3 values from the cne-way lcad tests ranged
from 0,264 to 0.005 with a mean of 0.076 and a
standard deviation of 0.0U48.

(3} The 3 values from the two=-way load tests ranged
from 0.064 to =-0.138 with a mean of 0.C315 and a
standard deviation of 0.036.

(4) One-way cyclic tests in sand rarely experienced a
cyclic degradation parameter less than 0.04, and
in none of the observed cne-way load testa did the
cyclic degradation parameter drop below zero.

(S) Two=way cyclic tests in sand rarely experienced a
cyeclic degradation parameter greater than 0.0%4,
and iug many ¢f the model pile teats in dry sand

the cyelic degradation parameter dropped bel ow
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zero, indicating a stiffenipg of the soil-pile
response with c¢yecling.

(6) The cyclic degradation parameter within any given

test tended to become constant as y/R inereased,

Therefore, one-~way cyclic lateral loading of piles in
sand may result in substantial degradation of the scil-pile
stiffnesas. Twoeway cyclic lateral loading of piles in sand,
however, appears to be much less significant, possibly neg-
ligible, and in some caseas may even result in substantial
local densification of the sc0il and in a stiffer pile res-
ponse with increasing cycles.

The pressuremeter method (Briaud, et al., 1985b) has
been shown to be very accurate (Figures 134 and 135)., This
method was used to predict the monotonic response of the
10.75 inch diameter pipe pile tested by Morrison and Reese
(1986) at the University of Houston. The predictions using
thke pre-boring pressuremeter results were good (Figures 140,
156, 157, and 158). The pre«boring pressuremeter usually
predicts well the response of drilled shafts. The predic-
tions uairng the pushed-in and driven pressuregeter results
were much stiffer thao the pile response (Figures 141 and
142)., This shows that the way the pile was placed (sand
compacted around the im=place pile) was close to simulating
a drilled shaft condition.

Twelve model pile load tests were performed at Texas

AtM Unjiversity. The pile was 1.36 inches in diameter and
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embedded 32 inches in a drum full of dry sand. Pressureze-
tepr tests were performed in the same drum with a pressurepe-
ter having the same diameter and placed in the sand in a
manner identical to the model pile. The aforementioned
preasuremeter method was used to predict the mepotonic res-
ponse of the model pile, OCOverall, the predictions were good
(Figures 143 through 154).

A method was proposed to obtain the gyelic P=y curves
from the monotonic P=y curveas. First, ﬁhe monotonic P=y 1is
obtained from the monotonrnic pressuremeter teat according to
the method proposed by Briaud, et al. (1985b), For best
accuracy, the PMT insertion technique should match the pile
insertion technique (driven PMT for driven piles, pre-bored
PMT for drilled shafts). Second, the pressuremeter-derived
moncoctonic Pey curve is modified as follows to obtain the
cyclic Pey curve for a number of cycles equal to N (Figure
136):

P(N) P(1) x §-8 (34)

y(N) y(1) (35)

where the c¢yclic pile deflection, y(N}), remains equal to the
monotoniec pile deflaection, y(1), while the c¢yclic resis-
tance, P(N), degrades with increasing cycles compared to the
monotonic resistance, P(1). The parameter 3 is obtairned
directly from cyclic pressuremeter tests by applying equa=
tions (34) apmd {(35) to the pressuremeter pressure and

increase in radius of the borehole,




261

It 13 essential to match the type of cyelic loading in
the pressuremeter test (pressure-control or volume=-control)
with the one of the pile load test (loadecontrol or dise-
placement-controel)., This was made clear by the fact that
for both the pressuremeter and the piles there was a
significant difference in degradation between the two tyrpes
of cyeling. Generally, the displacement/volume~control led
to greater degradatior than the load/pressure~contrcl tests
(Tables 3 and 6). Therefore, pressure-control cyclic pres-
suremeter tests should be chosen when modeling load-control
cyclic pile load teats and volume-control cyclic pressureme=
ter tests should be chosen when modeling displacement=-
control cyclic pile load tests.

The proposed pressuremeter method to obtainm the cyclic
P=-y curves and then predict the response of piles subjected
te a given number of horizontal load cycles was used to
predict the cyelic response of the 10,75 inch diameter pipe
pile and the twelve model pile tesats, The comparison
between the predicted and measured cyclic responses of the
ane=-way cyclic model pile locad tests were very good (Tables
12 and 13). This seems sspecially important since ocne-way
cycling proved to be the "™worst case®™ condition in both the
data base piles and in the model pile tests conducted at the
Texas A&M Univerasity laberatories. The comparisons between
the predicted and measured c¢yclic responses of the single

10.75 inch diameter pile and the two=way cyelilic model pile
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lcad tests indicated that the pressuremeter cannot predict
acecurately the response of piles in sand subjected to two-
¥ay horizontal c¢yelic loading. Indeed, the pressurempeter
probe expands radially in all directioms, and thus 1is
limited to one-way cyclic loading.

A recommended modificatiocn of the proposed cyclic pres.
suremeter method is that if the pile is subjected to load-
control cycles and, therefore, if the pressuremeter test 1is
a pressure-control test, equations 33 and 35 may be replaced

by:

P(N) P(1) : (36)

y(N} = y(1) x N*2 (37)

where the cyclic resaistance, P(N), remains equal to the
monotonic resistance, P(1), and the cyclic deflection, y(N),
increases with increasing cycles compared to the monotonic
deflection, y(1). Equatioms (34) and (35) would apply only
to displacement~control cyecliec pile load tests and volume-
contreol pressuremeter tests,

. Further research should include a series of cyclic
horizontal load tests on the model pile in wet sand and
especially in saturated sand, By comparing the results with
those in 4dry sand, {nferences could then be made‘regarding

the influence of the water table,
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APPENDIX A
Pile Load Tests from the Analysis

of Existing Data
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Pile Loading Soil
|
TYPE: ELEVATION CF TYPE:
steel pipe LATERAL LOAD: fine silty sand
12" above G.S8.
INSERTION: APPLIED MOMENT:
driven " 0 4in-kips
DIAMETER: VERTICAL LOQOAD: INDEXY PROPERTIES: f
24" 0 kips Wp, = 17 - 33 %
Dp. = 27 - 100 %
MBEDDED LENGTEH: HEAD CONDITION:
£9 feet free STRENGTH:
N = 30, 10" - 40!
E:: LATERAL LOAD TEST: N =5, 40' - 50
5.9x107 ksi 2=way cyelie, N > 40, > 50!
major:minor load =
4 : 1
CYICLIC PERIOD:
16 =« 20 sec.
CYICLIC CONTROL:
load I
m—
“ L l L4 l T ' L ‘ T ’ T ' T l T ' T r T _l
L LOAD TEST : 1.1
Mustang Island 1 1
58 ~ Reese, Cox, Grubbs #1100
1967
s 3 <
s |
z Wr #7900 -
2 ' ;
S 3| -
§ ‘
< 29
5 X - mecnotonic response of

18

Pile with same specs.
e ~ monotonic¢ response of
the test pile e
# - ¢cyclic response of the
test pile (N max.) 1
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Pile Loading Soil
TYPE: ELEVATION OF TYPE:
steel pipe LATERAL LOAD: fine silty sand
12" above G.S.
INSERTION: APPLIED MOMENT:
driven @ 4in=-kips
DIAMETER: VERTICAL LCAD: INDEX PROPERTIES:
24" 0 kips Hn s 17 = 33 ¢
Dr = 27 - 100 %
EMBEDDED LENGTH: HEAD CONDITION:
69 feet free STRENGTH:
' N = 30, 10' - 40
EIl: LATERAL LOAD TEST: N = 5, 4g' - 50
5.9%107 ksi 2-way cyeclie, N > 40, > 50
major:ainor load =
4 : 1
CYCLIC PERICD:
16 = 20 sec.
CYICLIC CONTROL:
leoad
s8 T T 1 T 7T
. LOAD TEST : 1.2 1
‘Mustang Island 100
S8 = Reese, Cox, Koop -~
ii 1967 )
3 48 ///////3100
-l %50
2 38 y/’, -
) )
< [ 100
-
- -
- e - monotonic response :
18 x - cyclic response (N max.)
8 { I RPN S EEPE
[ ] S8 iss 158 288 258 e 358 428

MAX. BENDING MOMENT (ft-kipe)
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Pile

TYPE:
square precast
concrete

INSERTION:
driven

SIDE DIMENSION:
11.8"

EMBEDDED LENGTH:
16.4 feet

EI: 5
b . 85x10° ksi

Loading

ELEVATION OF
LATERAL LOAD:
not available

APPLIED MOMENT:
§ ipekips

VERTICAL LOAD:
0 kips

HEAD CONDITICN:
free

LATERAL LOAD TEST:
1=%ay c¢yclie,

CICLIC PERIOD:
not available

CYCLIC CONTROL:
load

270

Soil

TYPE:
sandy clay loanm

INDEX PROPERTIES:
not available

STRENGTH:
not available

5 e
" 0.S.S.R.

| Fayans,
1978

LOAD TEST : 2.1

et

LATERAL LOAD Ghipe)

menotonie¢ response
response envelope
thirteen cycles
response envelope
fifty-five cycles
response envelope
ninety-two cycles

. . A I e

after

after

after

18

yR @

13




Pile

TIPE:
square precast
concrete

INSERTION:
driven

SIDE DIMENSION:
t1.8"

EMBEDDED LENGTH:
16§.4 feet

EI: 6
4.85x10"7 ksi

Loading

ELEVATION OF
LATERAL LOAD:
not available

APPLIED MOMENT:
0 in=-kips

VERTICAL LOAD:
0 kips

HEAD CONDITION:
free

LATERAL LOAD TEST:
i=-way c¢yclie,

CYCLIC PERIOD:
not available

CYCLIC CONTROL:

7

Soil

P

TIPE:
sandy clay lcam

INDEX PROPERTIES:
not available

STRENGTEH:
not availlable

load
s "_ ¥ r L i r LE i_ L _‘
I 1 30
LOAD TEST : 2.2

. U.s.s. R.
4 " Fayans,
1978

LATERAL LOAD (hipe)
W
'

et al.

¢ - monotonic response
X - response envelope after
thirty cycles




TIPE:
timber

INSERTION:
driven

DIAMETER:
14

EMBEDIDED LENGTH:
35 feet

EI: 6
3.77Tx10° ksi

Loading

ELEVATICN CQF
LATERAL LOQAD:

LATERAL LQAD TEST:

l-way cyclic after
vertical locading to
failure, and static
lateral loading to
30 kips

CYCLIC CONTROL:
load

TIPE:

272

e —

Soil

L

sand and gravel,

28" above G.S. densed, ungrouted.
APPLIED MOMENT:
0 ipn=-kipa
VERTICAL LOAD: INDEX PROPERTIES:
60 kips D, = 50 - 80 2
HEAD CONDITION:
free monolith STRENGTH:
(3x3x3 ft.) ¢ = 28 - 40°

Py = 20 - 90 ksf

» —————————
. LOAD TEST : 3.1
Loeck & Dam 26

» Perez and Holloway

- 1978

i 197

S 28

3

<

- )

S -
18

monctonic response
response of cycle 1 -
after mcnotonic loading
response of cycle 11

« after monotounic loading
- response of cycle 23
after monotonic loading

E

L

g

<8 48
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3.77x108 kst

{=-way cyclic after
vertical loading to
failure, and static
lateral lcading to
40 kips

CYCLIC CONTROL:
load

80

40°

90

Pile Loading Soil
SRS SR
TIPE: ELEVATIGN OF TYPE:
timber LATERAL LOAD: ¢
37.5" above G.S. |densed, grouted.
INSERTION: APPLIEZD MOMENT:
driven 0 1in-kips
DIAMETER: VERTICAL LOAD: INDEX PROPERTIES:
tym 60 kips D, = 50 -
EMBEDDED LENGTH: HEAD CCNDITION:
35 feet free monolith STRENGTH:
(3x3x3 ft.) ¢ = 28 -
EI: LATERAL LOAD TEST: PL = 20 =

sand and gravel,

ksf

48

- 1978

LATERAL LOAD Gripe)

18

LOAD TEST :
Lock & Dam 26
Perez and Bolloway

3-2

monotonic response
response of cycle 1
after monotonic loading
response of cycle 20
after monotonice lcading
response of cycle 40
after monotonic loading

| SR R R S S

30 48

yR @
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[ }
Pite I Loading Soil
TIPE: ELEVATION OF TYIPE:
Hepile LATERAL LOAD: sand and gravel,
(BP 14 x 73) 0.0" above G.S. |densed, ungrouted.
INSERTION: APPLIED MOMENT:
driven 0 1in=-kips
SIDE DIMENSION VERTICAL LOAD: INDEX PROPERTIES:
13.61" 0 kips Dr = 50 - 80 %
EMBEDDED LENGTR: HEAD CONDITION:
55 feet free STRENGTH:
$ = 28 - 40°
EI: LATERAL LOAD TEST: e _ g
2.11x107 ksi t-way cyeclic after
mototonie lateral
loading to 66 kips
CICLIC CONTROL:
load
7 N N v i | i b ) W v i |
- x -
LOAD TEST : 3.3
8@ I rLock & Dam 26 =
11  Perez and Helloway >
3 Wl :
L 1 5 15 23 .
3 ’ = —
-
- 5 4
g x - monotonic response 1
19 e - cyclic response envelopes
(cycle number, ¥) )
S - | .
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| Pile Loading Soil
o
TYPE: ELEVATION QF TYPE:
steel pipe LATERAL LOQOAD: sand and gravel,
{PP 14 x 0.375) 0.0" above G.S. | densed, ungrouted,.
INSERTION: APPLIED MOMENT:
driven 0 inekips

SIDE DIMENSION

VERTICAL LOAD:

INDEX PROPERTIES:

14w 0 kips p¥ = 50 - 80 %
EMBEDDED LENGTE: HEAD CONDITION:
85 feet free STRENGTH:
b = 58 - 40°
EIl: ' ve LATERAL LOAD TEST: e ©
1.,08x10' ksi j-way cyclic after
monotonic lateral
loading to 66 kips
CYICLIC CONTROL:
load
N
7' Ll L L l L L L l L L] L ] | J xt L4 ‘ll
P LOAD TEST : 3.4 T
. Lock & Dam 26 -
Perez and Holloway
L d o -
& 1978 J
- b 4
3 58
g or 5 15 |
3 .
o —
-
-d . -
<o - -
x ~-monotonic response R
18 e - cyclic response envelopes .,
(¢yele number, N) ]
) P B | PR
g s 48 - g8

yR O
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Pile Loading Soil
TYIPE: ELEVATION OF TYPE:
Hepile LATERAL LCAD: sand and gravel,
(EP 14 x 73) 0.0"™ above G.S. |densed, post-grouted.
INSERTION: APPLIED MOMENT:
driven 0 4in-kips

ISIDE DIMENSION
13.61"

EMEEDDED LENGTH:
58 feet

EI:
2.11x107 ksi

YERTICAL LOAD:
0 kips

HEAD CONDITION:
free

LATERAL LOAD TEST:

1=way cyeclice after'

monotonie lateral
loading to 70 kips

CICLIC CONTROL:

INDEX PROPERTIES:

STRENGTH:
¢ = 35°
© 2 0.7 ksf

. _

load
7' L4 Ly L L 4 ¥ L2 Ls r [
 LOAD TEST : 3.5

F 1978

LATERAL LOAD Ghipe)
»
L]
1

10

Leck & Dam 26
Perez and Holloway

23 5&14

X - monotonic response
& - ¢cyclic response envelopes _
(cycle number, N)

PR NP G B

‘ ¥ _'
-
-
-
—
-4
—
-
-y
-
-
-

4 e L L ' -

9 e
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Soil

i

TYPE:
steel pipe
(PP 14 x 0.375)

INSERTION:
driven

SIDE DIMENSION
140

EMBEDDED LENGTH:
55 feet

EI:
1.08x107 ksi

R

ELEVATICN OF
LATERAL LOAD:
0.0™ above G, 3.

APPLIED MOMENT:
0 ip-kips

VYERTICAL LOAD:
0 kips

HEAD CONDITION:
free

LATERAL LOAD TEST:
1=way cyclic after

monotonic lateral
loading to 70 kips

CICLIC CONTROL:
load

S U

TYPE:
sand and gravel,
densed, post-grouted.

INDEX PROPERTIES:

STRENGTH: o
2 z 8?7 ksf

79 v

1978

LATERAL LOAD Geipe)

* LCAD TEST :
Loek & Dam 26

Perez and Hollowai////’,/z
»x

l’ L Ld
3.6

X - monotonic res

@ - cyclic response envelopes -
(eycele number,

- 2

L N —— I

| | | ,'l/”r
x

ponse

N) 4
|

49
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Soil

- -

ELEVATION OF

TIPE:
Hepile LATERAL LOAD:
(HP 14 x 73) 0.0" above G.S.
INSERTION: _ APPLIED MOMENT:
driven 0 1in-kips
SIDE DIMENSION VERTICAL LOQAD:
13.61" ¢ kips
EMBEDDED LENGTH: HEAD CONDITION:

55 feet free

LATERAL LOAD TEST:
l=-way cyellice

EI:
2.11%x107 ksi

CYCLIC CONTROL:
load

TYPE:
sand and gravel,
densed, post-grbuted.

INDEX PROPERTIES:

STRENGTH:
¢ = 35°
¢ 0.7 ksf

‘. 2 2 L T L r L b, L LE l’ L L n L l’ L ) LJ L L J
' LOAD TEST : 3.7
b Lock & Dam 26 i
L Perez and Holloway /f f
3 s 1
3 | '
-d " E
2 @ I~ o—o -ungrouted -
g . so0il response .
< L  X~---X - postsgrouted E
| s¢0il responae
18 - -
3 L
g b 1 .f/ L
[ | S8 108 158 <98

MAX. BENDING MOMENT (Fi-hipe)
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—
TYPE: ELEVATION OF TIPE:
steel pipe LATERAL LOAD: sand and gravel,
(PP 14 x 0.375) 0.0" above G.S. | densed, post-grouted.
INSERTION: APPLIED MOMENT:
driven 0 1io~kips
SIDE DIMENSION VERTICAL LOCAD: INDEX PROPERTIES:
14w 0 kips
EMBEDDED LENGTH: HEAD CONDITION:
55 feet free STRENGTH: o
® 2 377 ksr

El:
1.08x107 ksi

LATERAL LOAD TEST:

lT=way cycl

CYCLIC CONTROL:
load

¢

" L L Li ¥ l’ L L ¥ I’ L l ¥ Lo L ¥ ' L3 L T 1—'
[ LOAD TEST : 3.8 H
* Lock & Dam 26 < o 1
b Perez and Heolloway yoo 1
T g | 1978 / -
- !
S . di / J
ol ,' , -
3 oy
- 3 I[,f e
<4 28 /] -
7 ! 5
E o / ’l -
- / &
- 3 / p
X o0 - ungrouted ;4 4
19 b 30il response roh _
X-=-X - post=grouted I’ /f
I s0il response ;1 1
b / ,f -
L 14,5:!25 .
g e N EUNE B SRR W O
[ L 109 158 < 58

MAX. BENDING MOMENT (ft-kipe)




Pile Loading Soil
P— " sl
TYPE: ELEVATION COF TYIPE:
Hepile LATERAL LOAD: sand and gravel,
(HP 14 x 73) 6§.5" above G.S. | densed, ungrouted.

INSERTION:
driven

SIDE DIMENSION
13.61"

EMEEDDED LENGTH:
67 feet

El:
2.11x107 ksi

APPLIED MOMENT:
0 4in=kips

VERTICAL LOAD:
0 kips

HEAD CONDITION:
free

LATERAL LOAD TEST:
l=way cyeclic

CYCLIC CONTROL:
load

280

INDEX PROPERTIES:

Dp = 50 - 80 %
STRENGTH:

N =15 Q' - 25

N > 40, > 25

¥

LATERAL LOAD Chipe)

—
L

—rT 7 L — r—r
b LOAD TEST : 4.1 DVae25 -
| Lock & Dam 26 .
Briaud, Brasuell,
. and Tucker e
1984
— a—

el

¢ - monotonic response
e - cyclic response .
(eycle number, N)

NP R

| I |

4 -]

yR @

8 19 12
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Pile Loading Soil I
P L
TYIFE: ELEVATION CF TYPE: .
H=-pile LATERAL LOAD: sand and gravel,
(EP 14 x 713) 6.5" above G.S. | densed, ungrouted.
INSERTION: APPLIED MOMENT:
driven 0 4in=-kips
SIDE DIMENSION VERTICAL LOAD: INDEX PROPERTIES:
13.61" 0 kips Dr = 50 - 80 %
EMBEDDPED LENGTH: HEAD CONDITICN:
£7 feet free STRENGTH: ,
N = 15" Q' = 25
EI: LATERAL LOAD TEST: N > 40, > 25
2.112107 kst t-way cyelic
CYCLIC CONTROL:
load
a a g T T r L Ty ’ L L4 r l L4 L4 ¥ l L) ) T i T L3 r*‘]
1 10 25 |
b LOAD TEST : 4.2 ? 98 .
| Lock & Dam 26 .
-~ Briaud, Brasuell, ;
5.  and Tucker .,‘
& -9 _19814 i
3 J
< -
&
F ] e
3
18 -
¢ - monotonic response )
® - cyclic response 4
(eycle number, N)

PR AN U BN SR W |
9 4 4 8 8 19 12
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P—
Piie Loading Soil
= —
TYPE: ELEVATION CF TYPE:
reinforced LATERAL LOAD: dense fine sand,
concrete 18 feet above overlying silty,
‘ nudline clayey sand under=-
lain by stiff clay
INSERTION: APPLIED MOMENT:

¢asing vibrated
into soil 37°,
augured to 517,

0 in-kips

VERTICAL LOAD:

INDEX PROPERTIES:

cast-in=-place Q0 kips Yo = 108 perf
DIAMETER HEAD CONDITION: STRENGTH:
Lgn free ¢ = 0.0
. ¢ = 37-389, o-zar
EMEEDDED LENGTH: LATERAL LOAD TEST: = 3&-380, 28-431
51 feet 1=way c¢yelic
EI: CYCLIC PERIOD:
1.00x107 kst 2 minutes
CICLIC CONTROL:
load
m
Ia L) T L) L} 1 L L] L] ¥ ’ L4 T T T
. LQAD TEST 5.1 p
4 Tampa Bay o
~ 108 = Long and Reese -
& 198y ]
& . 4
g *f ]
- b -
d sg I -
s o -
o L E
-
- 5
4 -
. ¢ - monotonic response
<8 r @ - cyclic response envelope
L after forty cycles
2 . N L . R N N | —— a
] S 19 15
yR QD
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e R T R —

- Pile Loading Soil
m
TYFE: ELEVATION OF TYPE:
reinforced LATERAL LOAD: derse fine sand,
concrete 18 feet above overlying silty,
audline clayey sand under-
lain by stiff clay
INSERTION: APPLIED MOMENT:
casing vibrated 0 1in-kips
into s0il 37",
augured to 51°, VERTICAL LOAD: INDEX PROPERTIES:
cast=in-place 0 kips Yo = 108 pef
DIAMETER HEAD CONDITION: STRENGTH:
ygn free e = 0.0
$ = 37-38°, o0-28'
EMBEDDED LENGTH: LATERAL LOAD TEST: = 34-38°, 28-43"
51 feet 1T-way cyclice
EI: CICLIC PERIOD:
1.00x109 ksi 2 minutes

CICLIC CONTROL:
load

Y T T L L T T T ' y y

LOAD TEST : §&.2 }
“ Tampa Bay 4
5 188 ~ Long and Reese -
S 1984 3
: o >
- ]
d -’
= o8 -
u -y
< ]
-l y
48 -
e - monotonic response :
29 @ - cyclic response envelope
after forty cycles :

—

—
i

L S 19
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APPENDIX B
Cycliec Degradation of the Pressuremeter

Cyclic Shear Modulus
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